A 29 kDa intracellular chloride channel p64H1 is associated with large dense-core vesicles in rat hippocampal neurons. (57/9631)

A novel class of intracellular chloride channels, the p64 family, has been found on several types of vesicles. These channels, acting in concert with the electrogenic proton pump, regulate the pH of the vesicle interior, which is critical for vesicular function. Here we describe the molecular cloning of p64H1, a p64 homolog, from both human and cow. Northern blot analysis showed that p64H1 is expressed abundantly in brain and retina, whereas the other members of this family (e.g., p64 and NCC27) are expressed only at low levels in these tissues. Immunohistochemical analysis of p64H1 in rat brain, using an affinity-purified antibody, revealed a high level of expression in the limbic system-the hippocampal formation, the amygdala, the hypothalamus, and the septum. Immunoelectron microscopic analysis of p64H1 in hippocampal neurons demonstrated a striking association between p64H1 and large dense-core vesicles (LDCVs) and microtubules. In contrast, very low p64H1 labeling was found in perikarya or associated with small synaptic vesicles (SSVs) in axonal profiles. Immunoblot analysis confirmed that p64H1 is colocalized with heavy membrane fractions containing LDCVs rather than the fractions containing SSVs. These results suggest that p64H1-mediated Cl- permeability may be involved in the maintenance of low internal pH in LDCVs and in the maturation of LDCVs and the biogenesis of functional neuropeptides.  (+info)

Anti-endothelial cell antibodies in systemic vasculitis and systemic lupus erythematosus (SLE): effects of heat inactivation on binding and specificity. (58/9631)

Heating sera is used to inactivate complement but may affect the binding characteristics of autoantibodies. We studied the effect of heating sera from patients with systemic vasculitides and SLE on antibody binding to cultured human umbilical vein endothelial cells. Sera from 32 patients with systemic vasculitides, eight with SLE and 10 healthy controls were studied for anti-endothelial cell antibodies (AECA) using an ELISA before and after heating sera to 56 degrees C for 30 min. The median (range) AECA binding index in the patient group increased from 20% (0-153%) to 71.5% (10-259%) (P < 0.0001). The AECA binding index in the control group also increased from 14% (0-52%) to 90% (42-154%) (P < 0.0001). The increased binding was unaffected by the addition of fresh complement or removal of immune complexes and the increased binding after heating persisted even after cooling to 4 degrees C. Specificity experiments showed that after heating, the binding specificity of sera was lost. Removal of immunoglobulin with Protein A abolished the increased binding seen after heating. Heating sera increases AECA binding in both patient and control sera. The mechanism is probably non-specific damage to the immunoglobulin molecule, and heating sera should thus be avoided.  (+info)

Differences in epitope accessibility of p53 monoclonal antibodies suggest at least three conformations or states of protein binding of p53 protein in human tumor cell lines. (59/9631)

The p53 tumor suppressor gene is deleted or mutated in over 50% of human tumors. Mutations frequently extend the half-life of the p53 protein; and a high level of nuclear p53 expression, detected by immunohistochemistry, has been used to predict the p53 status of tumors. We compared the sensitivity and reactivity of five frequently used, commercially available monoclonal antibodies (1801, DO1, DO7, BP53.12 and 421) in immunoblot and immunofluorescence assays, and found that results differed among the antibodies. Comparison of immunoblot analysis of denatured nuclear and cytoplasmic p53 protein were consistent with antibodies DO1, DO7 and BP53.12, each of which generated a strong specific signal in both cell fractions. However, in situ analysis demonstrated that although all antibodies recognized nuclear p53, only BP53.12 and 421 recognized p53 protein in the cytoplasm. In addition, 1801 produced a signal in p53-negative tumor cell lines. Differences in situ among the antibodies were probably due to the accessibility of their respective epitopes and suggested that nuclear and cytoplasmic p53 either have different three-dimensional conformations or are bound to different proteins. A third p53 protein conformation was also suggested by the observation that only two of the five antibodies (BP53.12 and DO7) detected induced levels of p53 in situ following exposure to ionizing radiation. In summary, except for the fact that DO7 does not recognize cytoplasmic p53 in situ, we found it to be the most specific, versatile, and reliable antibody. We conclude that the p53 antibody of choice depends upon the specific goal of a study and the method used to detect this protein.  (+info)

Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. (60/9631)

BACKGROUND: The abnormal control of parathyroid hormone secretion in chronic renal failure is attributed, in part, to down-regulation of the calcium-sensing receptor (CaR) in hyperplastic parathyroid tissue. The cause of this down-regulation is unknown. Here we examined the roles of uremia and parathyroid hyperplasia on parathyroid gland (PTG) CaR expression in the rat model of renal failure. METHODS: Rats made uremic by 5/6 nephrectomy were maintained for one month on diets containing 0.2% P (low phosphate), 0.5% P (normal phosphate) or 1.2% P (high phosphate); intact rats (controls) were maintained on the normal-phosphate diet. RESULTS: CaR mRNA was reduced only in uremic rats fed the high-phosphate diet (55% less than in controls, P < 0.05). Immunohistochemical staining revealed decreased CaR protein expression in uremic high-phosphate rat PTG compared with controls (41% decrease as determined by computer-assisted quantitation, P < 0.01). PTG size was increased in uremic rats fed the high-phosphate diet compared with controls (2.77 +/- 0.95 vs. 0.77 +/- 0.16 microgram/g body wt, P < 0.0001). There was no increase in PTG size in uremic rats fed the low-phosphate and normal-phosphate diets (0.92 +/- 0.31 and 1.01 +/- 0.31 micrograms/g) compared with controls (0.77 +/- 0.16 microgram/g body wt). Immunohistochemical staining for proliferating cell nuclear antigen in hyperplastic PTG from uremic rats showed that CaR was decreased primarily in areas of active cell proliferation. CONCLUSION: These results suggest that CaR down-regulation cannot be attributed to uremia per se, but rather, is associated with parathyroid cell proliferation. Furthermore, dietary phosphate restriction prevents both the parathyroid hyperplasia and decreased CaR expression in renal failure.  (+info)

Induction of albuminuria in mice: synergistic effect of two monoclonal antibodies directed to different domains of aminopeptidase A. (61/9631)

BACKGROUND: Aminopeptidase A is an enzyme that is present on podocytes and is involved in the degradation of angiotensin II. In previous studies in mice, we administered single monoclonal antibodies directed against aminopeptidase A. We observed that only monoclonal antibodies that inhibited aminopeptidase A enzyme activity caused albuminuria. METHODS: In this study, the effects of the combined injections of two monoclonal anti-aminopeptidase A antibodies (mAbs) were studied, using a combination of anti-aminopeptidase A mAbs that were directed against two different domains involved in the aminopeptidase A enzyme activity (ASD-3 or ASD-37) and an anti-aminopeptidase A mAb not related to the enzyme active site (ASD-41). RESULTS: An injection of the combinations ASD-3/37 (total 4 mg, 1:1 ratio) and ASD-37/41 (total 4 mg, 1:1 ratio) in doses that do not cause albuminuria when given alone (4 mg) induced massive albuminuria at day 1 after injection. The combination ASD-3/41 had no effect. This albuminuria was not dependent on systemic immune mediators of inflammation and could not merely be related to a blockade of aminopeptidase A enzyme activity. However, a correlation was observed between the induction of albuminuria and the aggregation of the mAbs injected and aminopeptidase A on the podocytes. An injection of the combinations ASD-3/37 or ASD-37/41 did not cause an increase in systemic blood pressure. The treatment with a combination of enalapril and losartan lowered blood pressure (53 +/- 10 vs. 90 +/- 3 mm Hg in untreated mice) and reduced the acute albuminuria by 55% (11,145 +/- 864 vs. 24,517 +/- 2448 micrograms albumin/18 hr in untreated mice). However, similar effects were observed using triple therapy. Therefore, the reduction of albuminuria by the combined treatment of enalapril/losartan seems to be the consequence of the reduction in the systemic blood pressure. These findings argue against a specific role for angiotensin II in this model. CONCLUSIONS: The combined injection of two mAbs directed against different domains of aminopeptidase A induces a massive albuminuria in mice, which is not merely dependent on angiotensin II. We hypothesize that the direct binding of mAbs to at least two pathogenic domains on aminopeptidase A triggers the podocyte to release mediators that are involved in the observed albuminuria.  (+info)

Cloning and modeling of the first nonmammalian CD4. (62/9631)

We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.  (+info)

Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. (63/9631)

The inactivated poliovirus vaccine (IPV) is used for protection against poliomyelitis in The Netherlands. It is not clear, however, whether IPV vaccination can lead to priming of the mucosal immune system and the induction of IgA. It has been demonstrated that IPV vaccination is able to induce strong memory IgA responses in the serum of persons who have been naturally exposed to wild-type poliovirus. This has led to the hypothesis that IPV vaccination is able to induce poliovirus-specific IgA at mucosal sites in persons who have been previously primed with live poliovirus at mucosal sites. To test this hypothesis, the kinetics of the IgA response in serum and saliva after IPV vaccination were examined in persons previously vaccinated with oral poliovirus vaccine (OPV) or IPV. ELISA and enzyme-linked immunospot assays were used for the detection of poliovirus-specific IgA responses. In addition, B cell populations were separated on the basis of the expression of mucosal (alpha4beta7 integrin) and peripheral homing receptors (L-selectin). Parenteral IPV vaccination was able to boost systemic and mucosal IgA responses in previously OPV-vaccinated persons only. None of the previously vaccinated IPV recipients responded with the production of IgA in saliva. In agreement with this finding, a large percentage of the poliovirus-specific IgA-producing lymphocytes detected in previous OPV recipients expressed the alpha4beta7 integrin. It is concluded that IPV vaccination alone is insufficient to induce a mucosal IgA response against poliovirus. In mucosally (OPV-) primed individuals, however, booster vaccination with IPV leads to a strong mucosal IgA response.  (+info)

Specificity analysis of sera from breast cancer patients vaccinated with MUC1-KLH plus QS-21. (64/9631)

The mucin MUC1 is expressed on breast cancers in an underglycosylated form compared to normal tissues and is therefore a potential target for cancer immunotherapy. MUC1 contains multiple tandem repeats of the 20 amino acid (aa) peptide (VTSAPDTRPAPGSTAPPAHG). The APDTRPA epitope is particularly immunogenic since it is recognized by a variety of murine monoclonal antibodies and by some sera and cytotoxic T-cells from unimmunized patients with epithelial cancers. We have prepared a 30 aa peptide (C)VTSAPDTRPAPGSTAPPAHGVTSAPDTRPA with cysteine at the N-terminal end, and used the cysteine for chemical conjugation to keyhole limpet haemocyanin (KLH). Six breast cancer patients immunized with this conjugate plus the immunological adjuvant QS-21 have all produced high titre (by ELISA) IgG and IgM antibodies against the 30 aa MUC1 peptide, but these sera reacted moderately, or not at all, with MUC1-positive tumour cells. To understand this specificity better, we prepared a series of smaller peptides to determine the epitopes recognized by these immune sera in inhibition assays. Only peptides containing APDTRPA at the C-terminal end were able to completely inhibit ELISA reactivity for the full 30 aa peptide. No sera were completely inhibited by APDTR, APDTRP, PDTRPA or any other peptides that did not contain the full APDTRPA epitope. Remarkably, sera from all six patients recognized this same epitope and were completely inhibited by only this epitope. The specificity of these sera (1) primarily for C-terminal APDTRPA, and the absence of this epitope at the C-terminal end of any tumour mucins, and (2) the N-terminal APDTRPA alanine, which is normally buried in the beta turn MUC1 assumes in its secondary structure may explain the moderate to weak reactivity of these high titer sera against MUC1-positive tumour cells.  (+info)