Cloning, expression, and characterization of the Fab fragment of the anti-lysozyme antibody HyHEL-5. (49/15913)

Hybridoma cDNAs encoding the individual chains of the Fab fragment of the well characterized murine monoclonal antibody HyHEL-5 were cloned and sequenced. The recombinant Fab fragment was produced by expressing each chain in a separate Escherichia coli pET vector, denaturing inclusion bodies and co-refolding. Characterization of the purified Fab by MALDI-TOF mass spectrometry and N-terminal amino acid sequencing demonstrated proper processing of the individual chains. The association of the recombinant Fab fragment with hen egg lysozyme and the avian epitope variant bobwhite quail lysozyme was found by isothermal titration calorimetry to have energetics very similar to that of the HyHEL-5 IgG. Heterologous expression of the HyHEL-5 Fab fragment opens the way to structure/function studies in this well-known system.  (+info)

The negative effect of repeated equine chorionic gonadotropin treatment on subsequent fertility in Alpine goats is due to a humoral immune response involving the major histocompatibility complex. (50/15913)

In dairy goats, the use of eCG as a convenient hormone for the induction of ovulation is necessary for out-of-season breeding and artificial insemination. However, repeated eCG treatments are followed by decreased fertility in goats inseminated at a fixed time after treatment. In this report, we show the presence of anti-eCG antibodies in plasma of treated goats. A 500 IU eCG injection induces a humoral response, with variable concentrations of anti-eCG antibody being produced in individual goats. The analysis of successive anti-eCG immune responses over several years has demonstrated the existence of different populations of goats, defined as low, medium, and high responders. By the use of two caprine microsatellites located inside (OLADRB) and outside (BM1258) the major histocompatibility complex (MHC), a significant association (p < 0.05) between the anti-eCG antibody response and some MHC-DRB alleles was found. Goats with high antibody concentrations at the time of eCG injection (> 2.5 microg/ml) exhibited a much lower kidding rate than did other females (41.3% vs. 66.7%). Lower fertility of these goats, inseminated at a fixed time after eCG treatment, might be due to the observed delay in estrus occurrence and the preovulatory LH surge.  (+info)

Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin beta1. (51/15913)

Activated Cdc42-associated kinase-2 (ACK-2) is a non-receptor tyrosine kinase that appears to be a highly specific target for the Rho-related GTP-binding protein Cdc42. In order to understand better how ACK-2 activity is regulated in cells, we have expressed epitope-tagged forms of this tyrosine kinase in COS-7 and NIH3T3 cells. We find that ACK-2 can be activated by cell adhesion in a Cdc42-dependent manner. However, unlike the focal adhesion kinase, which also is activated by cell adhesion, the activation of ACK-2 is F-actin-independent and does not require cell spreading. In addition, overexpression of ACK-2 in COS-7 cells did not result in the stimulation of extracellular signal-regulated kinase activity but rather activated the c-Jun kinase. Both anti-integrin beta1 antibody and RGD peptides inhibited the activation of ACK-2 by cell adhesion. In addition, ACK-2 was co-immunoprecipitated with integrin beta1. Overall, these findings suggest that ACK-2 interacts with integrin complexes and mediates cell adhesion signals in a Cdc42-dependent manner.  (+info)

Differential regulation of beta1 integrins by chemoattractants regulates neutrophil migration through fibrin. (52/15913)

Chemoattractants differ in their capacity to stimulate neutrophils to adhere to and to migrate through matrices containing fibrin. Formyl methionyl leucyl phenylalanine (fMLP) stimulates neutrophils to adhere closely to, but not to migrate into, fibrin gels. Leukotriene B4 (LTB4) stimulates neutrophils to adhere loosely to and to migrate through fibrin gels. We report that alpha5beta1 integrins regulate the different migratory behaviors on fibrin gels of neutrophils in response to these chemoattractants. fMLP, but not LTB4, activated neutrophil beta1 integrins, as measured by binding of mAb 15/7 to an activation epitope on the beta1 integrins. Antibodies or peptides that block alpha5beta1 integrins prevented fMLP-stimulated neutrophils from forming zones of close apposition on fibrin and reversed fMLP's inhibitory effect on neutrophil chemotaxis through fibrin. In contrast, neither peptides nor antibodies that block beta1 integrins affected the capacity of LTB4-stimulated neutrophils to form zones of loose apposition or to migrate through fibrin gels. These results suggest that chemoattractants generate at least two different messages that direct neutrophils, and perhaps other leukocytes, to accumulate at specific anatomic sites: a general message that induces neutrophils to crawl and a specific message that prepares neutrophils to stop when they contact appropriate matrix proteins for activated beta1 integrins.  (+info)

In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. (53/15913)

The aim of this study was to evaluate the (3S)-3-hydroxylation and the N-oxidation of quinidine as biomarkers for cytochrome P-450 (CYP)3A4 activity in human liver microsome preparations. An HPLC method was developed to assay the metabolites (3S)-3-hydroxyquinidine (3-OH-Q) and quinidine N-oxide (Q-N-OX) formed during incubation with microsomes from human liver and from Saccharomyces cerevisiae strains expressing 10 human CYPs. 3-OH-Q formation complied with Michaelis-Menten kinetics (mean values of Vmax and Km: 74.4 nmol/mg/h and 74.2 microM, respectively). Q-N-OX formation followed two-site kinetics with mean values of Vmax, Km and Vmax/Km for the low affinity isozyme of 15.9 nmol/mg/h, 76.1 microM and 0.03 ml/mg/h, respectively. 3-OH-Q and Q-N-OX formations were potently inhibited by ketoconazole, itraconazole, and triacetyloleandomycin. Isozyme specific inhibitors of CYP1A2, -2C9, -2C19, -2D6, and -2E1 did not inhibit 3-OH-Q or Q-N-OX formation, with Ki values comparable with previously reported values. Statistically significant correlations were observed between CYP3A4 content and formations of 3-OH-Q and Q-N-OX in 12 human liver microsome preparations. Studies with yeast-expressed isozymes revealed that only CYP3A4 actively catalyzed the (3S)-3-hydroxylation. CYP3A4 was the most active enzyme in Q-N-OX formation, but CYP2C9 and 2E1 also catalyzed minor proportions of the N-oxidation. In conclusion, our studies demonstrate that only CYP3A4 is actively involved in the formation of 3-OH-Q. Hence, the (3S)-3-hydroxylation of quinidine is a specific probe for CYP3A4 activity in human liver microsome preparations, whereas the N-oxidation of quinidine is a somewhat less specific marker reaction for CYP3A4 activity, because the presence of a low affinity enzyme is demonstrated by different approaches.  (+info)

The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. (54/15913)

Niemann-Pick C disease (NP-C) is a neurovisceral lysosomal storage disorder. A variety of studies have highlighted defective sterol trafficking from lysosomes in NP-C cells. However, the heterogeneous nature of additional accumulating metabolites suggests that the cellular lesion may involve a more generalized block in retrograde lysosomal trafficking. Immunocytochemical studies in fibroblasts reveal that the NPC1 gene product resides in a novel set of lysosome-associated membrane protein-2 (LAMP2)(+)/mannose 6-phosphate receptor(-) vesicles that can be distinguished from cholesterol-enriched LAMP2(+) lysosomes. Drugs that block sterol transport out of lysosomes also redistribute NPC1 to cholesterol-laden lysosomes. Sterol relocation from lysosomes in cultured human fibroblasts can be blocked at 21 degrees C, consistent with vesicle-mediated transfer. These findings suggest that NPC1(+) vesicles may transiently interact with lysosomes to facilitate sterol relocation. Independent of defective sterol trafficking, NP-C fibroblasts are also deficient in vesicle-mediated clearance of endocytosed [14C]sucrose. Compartmental modeling of the observed [14C]sucrose clearance data targets the trafficking defect caused by mutations in NPC1 to an endocytic compartment proximal to lysosomes. Low density lipoprotein uptake by normal cells retards retrograde transport of [14C]sucrose through this same kinetic compartment, further suggesting that it may contain the sterol-sensing NPC1 protein. We conclude that a distinctive organelle containing NPC1 mediates retrograde lysosomal transport of endocytosed cargo that is not restricted to sterol.  (+info)

Heterogeneity of T-cell receptor usage in experimental autoimmune neuritis in the Lewis rat. (55/15913)

In experimental autoimmune neuritis (EAN), T-cell receptor (TCR) variable (V)-region gene usage by neuritogenic T cells has been reported to be clonally restricted at the RNA level. This study was designed to verify TCR usage by neuritogenic T cells at the protein level. We generated two monoclonal antibodies (mAbs) 7H4 and 8G8 specific for a Vbeta4/Valpha11 associated idiotype expressed by the majority of neuritogenic cells of P2-specific T-cell lines. The remaining neuritogenic P2-specific T cells either exhibited a dominant usage of the TCR Vbeta13 chain recognized by the recently generated mAbs 17D5 and 18B1 or showed diverse Vbeta usage. Treatment of adoptive-transfer (AT)-EAN or of EAN actively induced with the neuritogenic P2 peptide by mAbs 7H4 and 8G8 led to a partial, but significant, reduction of clinical disease. Treatment with Vbeta13-specific mAb 17D5 had no clear effect on active EAN. Our data show that at least three different TCR are used by P2-specific pathogenic T cells in EAN, an animal model for human inflammatory neuropathies.  (+info)

Fas (APO-1/CD95) signaling pathway is intact in radioresistant human glioma cells. (56/15913)

Radiation-induced apoptosis can be mediated through pathways initiated by either DNA damage or ceramide-induced Fas signaling. Glioblastoma multiforme is a primary brain tumor that is highly resistant to irradiation, and U-87 MG, SF126, and T98G are glioblastoma-derived cell lines that mimic this characteristic. We found that these radioresistant glioma cells are susceptible to Fas-mediated cell death induced by treatment with either anti-Fas antibody or exogenous ceramide. Fas-mediated cell death in these cell lines is p53-independent. These data demonstrate that apoptosis can be induced by ceramide and mediated through the Fas pathway in glioma cells, although high-dose ionizing radiation fails to trigger this pathway.  (+info)