Loading...
(1/5340) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice.

Epidermal growth factor receptor (EGFR) regulates the growth and progression of human transitional cell carcinoma (TCC) of the bladder. We have shown that therapy targeting EGFR inhibited the growth of human TCC established orthotopically in nude mice. The purpose of this study was to evaluate whether EGFR-directed therapy affects angiogenesis associated with the growth and metastasis of human TCC. We determined the cytostatic effect and the effect on production of angiogenic factors after in vitro treatment of the human TCC cell line 253J B-V with MAb C225, a chimerized monoclonal anti-EGFR antibody. The 253J B-V cells were implanted orthotopically into athymic nude mice, and established tumors (4 weeks) were treated with i.p. MAb C225. Expression of the angiogenic factors vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF) was evaluated by immunohistochemistry and in situ mRNA hybridization analyses and correlated with microvessel density evaluated after immunohistochemical staining with anti-CD31. In vitro treatment with MAb C225 inhibited mRNA and protein production of VEGF, IL-8, and bFGF by 253J B-V cells in a dose-dependent manner. MAb C225 therapy of nude mice with established TCCs growing orthotopically resulted in inhibition of growth and metastasis compared with controls (P <0.0005). VEGF, IL-8, and bFGF expression was significantly lower in treated tumors than in controls. The down-regulation of these angiogenic factors preceded the involution of blood vessels. These studies indicate that therapy with anti-EGFR MAb C225 has a significant antitumor effect mediated, in part, by inhibition of angiogenesis.  (+info)

(2/5340) A sialoglycoprotein, gp20, of the human capacitated sperm surface is a homologue of the leukocyte CD52 antigen: analysis of the effect of anti-CD52 monoclonal antibody (CAMPATH-1) on capacitated spermatozoa.

In this study we performed N-terminal sequence analysis of gp20, a 20 kDa sialoglycoprotein on the human sperm surface previously identified by radiolabelling of the sialic acid residues of sperm surface. We found 100% identity with the N-terminus of CD52, an antigen expressed on almost all human leukocytes. We also show that, like CD52, gp20 behaves as a glycosylphosphatidylinositol (GPI)-anchored protein and that anti-gp20 antiserum reacts with an antigen on leukocytes of the same molecular weight as CD52. Using CAMPATH-1, the monoclonal antibody against CD52, in fluorescent staining of capacitated spermatozoa, Western blot analysis and the zona-free hamster egg penetration test, we found that the effect of this antibody was different from that of our anti-gp20. Western blot analysis revealed a well-defined 20 kDa band with anti-gp20, whereas a 14-20 kDa band was detected with CAMPATH-1. Anti-gp20 stained the equatorial region of the sperm head, whereas CAMPATH-1 stained the tail in immunofluorescence analysis of capacitated spermatozoa. A dose-dependent inhibitory effect was seen with CAMPATH-1, similar to that previously detected with anti-gp20, in a zona-free hamster egg penetration test. However, with CAMPATH-1 agglutination of motile spermatozoa was detected, and this was not present with anti-gp20. This suggests that the epitopes recognized by the two antibodies are different.  (+info)

(3/5340) Elimination of the immunogenicity of therapeutic antibodies.

The immunogenicity of therapeutic Abs limits their long-term use. The processes of complementarity-determining region grafting, resurfacing, and hyperchimerization diminish mAb immunogenicity by reducing the number of foreign residues. However, this does not prevent anti-idiotypic and anti-allotypic responses following repeated administration of cell-binding Abs. Classical studies have demonstrated that monomeric human IgG is profoundly tolerogenic in a number of species. If cell-binding Abs could be converted into monomeric non-cell-binding tolerogens, then it should be possible to pretolerize patients to the therapeutic cell-binding form. We demonstrate that non-cell-binding minimal mutants of the anti-CD52 Ab CAMPATH-1H lose immunogenicity and can tolerize to the "wild-type" Ab in CD52-expressing transgenic mice. This finding could have utility in the long-term administration of therapeutic proteins to humans.  (+info)

(4/5340) Cooperative inhibitory effect of novel mixed backbone oligonucleotide targeting protein kinase A in combination with docetaxel and anti-epidermal growth factor-receptor antibody on human breast cancer cell growth.

Type I protein kinase A (PKAI) is overexpressed in the majority of human tumors and plays a relevant role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of PKAI by antisense oligonucleotides targeting its RIalpha regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. We have recently shown that a mixed backbone oligonucleotide targeting RIalpha can cooperatively inhibit human cancer cell growth when combined with selected cytotoxic drugs. In the present study, we have used HYB 165, a novel DNA/RNA hybrid mixed backbone oligonucleotide that exhibits improved pharmacokinetic and bioavailability properties in vivo and is presently undergoing Phase I trials. We have shown that HYB 165 exhibits a dose-dependent inhibitory effect on ZR-75-1 cells and a cooperative activity with docetaxel, a cytotoxic drug active in breast cancer. The antiproliferative activity is accompanied by increased apoptosis, as compared with each single agent. On the basis of our previous demonstration of a structural and functional relation between PKAI and epidermal growth factor receptor, we have performed a double blockade of these pathways using HYB 165 in combination with monoclonal antibody (MAb) C225, an anti-epidermal growth factor receptor chimeric MAb. The two compounds determined a cooperative growth inhibitory effect on ZR-75-1 cells and increased apoptosis. To study whether different biological agents and cytotoxic drugs can interact together, low doses of HYB 165, MAb C225, and docetaxel were combined causing an even greater cooperative effect toward growth inhibition. Finally, we have demonstrated that each single agent is able to induce bcl-2 phosphorylation and that the three agents, used in combination at suboptimal doses, determine a greater degree of bcl-2 phosphorylation and cause apoptosis of the majority of ZR-75-1 cells. These findings provide the basis for a novel strategy of treatment of breast cancer patients because both HYB 165 and MAb C225 are presently under clinical evaluation.  (+info)

(5/5340) Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225.

Epidermal growth factor (EGF)-related proteins such as transforming growth factor alpha (TGF-alpha) control cancer cell growth through autocrine and paracrine pathways. Overexpression of TGF-alpha and/or its receptor (EGFR) has been associated with a more aggressive disease and a poor prognosis. The blockade of EGFR activation has been proposed as a target for anticancer therapy. Monoclonal antibody (MAb) C225 is an anti-EGFR humanized chimeric mouse MAb that is presently in Phase II clinical trials in cancer patients. Previous studies have suggested the potentiation of the antitumor activity of certain cytotoxic drugs, such as cisplatin and doxorubicin, in human cancer cell lines by treatment with anti-EGFR antibodies. We have evaluated in human ovarian, breast, and colon cancer cell lines, which express functional EGFR, the antiproliferative activity of MAb C225 in combination with topotecan, a cytotoxic drug that specifically inhibits topoisomerase I and that has shown antitumor activity in these malignancies. A dose-dependent supraadditive increase of growth inhibition in vitro was observed when cancer cells were treated with topotecan and MAb C225 in a sequential schedule. In this respect, the cooperativity quotient, defined as the ratio between the actual growth inhibition obtained by treatment with topotecan followed by MAb C225 and the sum of the growth inhibition achieved by each agent, ranged from 1.2 to 3, depending on drug concentration and cancer cell line. Treatment with MAb C225 also markedly enhanced apoptotic cell death induced by topotecan. For example, in GEO colon cancer cells, 5 nM topotecan, followed by 0.5 microg/ml MAb C225, induced apoptosis in 45% cells as compared with untreated cells (6%) or to 5 nM topotecan-treated cells (22%). Treatment of mice bearing established human GEO colon cancer xenografts with topotecan or with MAb C225 determined a transient inhibition of tumor growth because GEO tumors resumed the growth rate of untreated tumors at the end of the treatment period. In contrast, an almost complete tumor regression was observed in all mice treated with the two agents in combination. This determined a prolonged life span of the mice that was significantly different as compared with controls (P < 0.001), to MAb C225-treated group (P < 0.001), or to the topotecan-treated group (P < 0.001). All mice of the topotecan plus MAb C225 group were the only animals alive 14 weeks after tumor cell injection. Furthermore, 20% of mice in this group were still alive after 19 weeks. The combined treatment with MAb C225 and topotecan was well tolerated by mice with no signs of acute or delayed toxicity. These results provide a rationale for the evaluation of the anticancer activity of the combination of topoisomerase I inhibitors and anti-EGFR blocking MAbs in clinical trials.  (+info)

(6/5340) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck.

We examined effects of the anti-epidermal growth factor receptor monoclonal antibody C225 on proliferation, cell cycle phase distribution, apoptosis, and radiosensitivity in squamous cell carcinoma (SCC) cell lines derived from head and neck cancer patients. Exposure to C225 in culture inhibits SCC proliferation in a time-dependent manner, and the degree of growth inhibition, compared to controls, ranges from 20 to 75%. Flow cytometry analysis demonstrates that C225 treatment induces accumulation of cells in G1, which is accompanied by a 2-3-fold decrease in the percentage of cells in S phase. C225 exposure also induces apoptosis in SCC populations, as demonstrated by flow cytometry analysis using dual stainings of merocyanine 540 and Hoechst 33342. Western blot analysis indicates that C225 exposure induces accumulation of hypophosphorylated retinoblastoma protein and increases expression of p27KIP1. An increase in Bax expression and concurrent decrease in Bcl-2 expression are observed when SCC cells are exposed to C225. Examination of C225 effects on radiation response in SCCs demonstrates enhancement in radiosensitivity and amplification of radiation-induced apoptosis. These effects are observed in both single-dose and fractionated radiation experiments. C225 represents a promising growth-inhibitory agent that can influence cellular proliferation, apoptosis, and radiosensitivity in SCCs of the head and neck.  (+info)

(7/5340) Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease.

We conducted a multicenter, double-blind, placebo-controlled, randomized trial of a humanized monoclonal antibody against a respiratory syncytial virus (RSV) fusion protein (SB 209763) to evaluate its safety, pharmacokinetics, and fusion inhibition and neutralization titers. Forty-three infants who were either delivered prematurely (+info)

(8/5340) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers.

Previous studies have demonstrated a synergistic interaction between rhuMAb HER2 and the cytotoxic drug cisplatin in human breast and ovarian cancer cells. To define the nature of the interaction between rhuMAb HER2 and other classes of cytotoxic drugs, we applied multiple drug effect/combination index (CI) isobologram analysis to a variety of chemotherapeutic drug/rhuMAb HER2 combinations in vitro. Synergistic interactions at clinically relevant drug concentrations were observed for rhuMAb HER2 in combination with cisplatin (CI=0.48, P=0.003), thiotepa (CI=0.67, P=0.0008), and etoposide (CI=0.54, P=0.0003). Additive cytotoxic effects were observed with rhuMAb HER2 plus doxorubicin (CI=1.16, P=0.13), paclitaxel (CI=0.91, P=0.21), methotrexate (CI=1.15, P=0.28), and vinblastine (CI=1.09, P=0.26). One drug, 5-fluorouracil, was found to be antagonistic with rhuMAb HER2 in vitro (CI=2.87, P=0.0001). In vivo drug/rhuMAb HER2 studies were conducted with HER-2/neu-transfected, MCF7 human breast cancer xenografts in athymic mice. Combinations of rhuMAb HER2 plus cyclophosphamide, doxorubicin, paclitaxel, methotrexate, etoposide, and vinblastine in vivo resulted in a significant reduction in xenograft volume compared to chemotherapy alone (P<0.05). Xenografts treated with rhuMAb HER2 plus 5-fluorouracil were not significantly different from 5-fluorouracil alone controls consistent with the subadditive effects observed with this combination in vitro. The synergistic interaction of rhuMAb HER2 with alkylating agents, platinum analogs and topoisomerase II inhibitors, as well as the additive interaction with taxanes, anthracyclines and some antimetabolites in HER-2/neu-overexpressing breast cancer cells demonstrates that these are rational combinations to test in human clinical trials.  (+info)