Lipoxygenase products increase monocyte adhesion to human aortic endothelial cells. (49/1058)

The development of atherosclerosis is accelerated in individuals with type 2 diabetes. Adhesion of monocytes to the vascular endothelium is a key initial step in atherogenesis. We have previously shown that monocyte adhesion to human aortic endothelial cells (HAECs) cultured long-term in high-glucose medium (25 mmol/L, 2 passages) is increased compared with cells grown in normal glucose (5 mmol/L). One potential mechanism for increased monocyte adhesion to HAECs under hyperglycemic conditions is via the 12-lipoxygenase (12-LO) pathway. In this study, we demonstrated in HAECs that the major LO metabolite of arachidonic acid was the 12-LO product, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which was increased severalfold in HAECs cultured under high-glucose conditions. Furthermore, treatment of HAECs with 12(S)-HETE induced monocyte, but not neutrophil, adhesion an average of 3-fold (range of 1.5- to 5-fold) compared with untreated cells (75+/-5 versus 26+/-1 monocytes per field, respectively, P<0.001). Expression of the adhesion molecules vascular cell adhesion molecule-1, E-selectin, and intercellular adhesion molecule-1 was not significantly increased. However, both glucose and 12(S)-HETE induced a 60% increase in HAEC surface expression of connecting segment-1 (ie, CS-1) fibronectin, a ligand for very late-acting antigen-4 (VLA-4). The antibodies used to block monocyte integrin VLA-4 and leukocyte function-related antigen-1, a monocytic counterreceptor for intercellular adhesion molecule-1, inhibited the ability of both 12-LO products and high glucose to induce monocyte adhesion. These results definitively demonstrate for the first time in HAECs that the 12-LO pathway can induce monocyte-endothelial cell interaction and that the effects of glucose may be mediated, at least in part, through this pathway. Thus, these results suggest that the 12-LO pathway may play a role in the increased susceptibility of diabetics to atherosclerosis.  (+info)

A critical role for B7/CD28 costimulation in experimental autoimmune encephalomyelitis: a comparative study using costimulatory molecule-deficient mice and monoclonal antibody blockade. (50/1058)

The B7/CD28 pathway provides critical costimulatory signals required for complete T cell activation and has served as a potential target for immunotherapeutic strategies designed to regulate autoimmune diseases. This study was designed to examine the roles of CD28 and its individual ligands, B7-1 and B7-2, in experimental autoimmune encephalomyelitis (EAE), a Th1-mediated inflammatory disease of the CNS. EAE induction in CD28- or B7-deficient nonobese diabetic (NOD) mice was compared with the effects of B7/CD28 blockade using Abs in wild-type NOD mice. Disease severity was significantly reduced in CD28-deficient as well as anti-B7-1/B7-2-treated NOD mice. B7-2 appeared to play the more dominant role as there was a moderate decrease in disease incidence and severity in B7-2-deficient animals. EAE resistance was not due to the lack of effective priming of the myelin peptide-specific T cells in vivo. T cells isolated from CD28-deficient animals produced equivalent amounts of IFN-gamma and TNF-alpha in response to the immunogen, proteolipid protein 56-70. In fact, IFN-gamma and TNF-alpha production by Ag-specific T cells was enhanced in both the B7-1 and B7-2-deficient NOD mice. In contrast, peptide-specific delayed-type hypersensitivity responses in these animals were significantly decreased, suggesting a critical role for CD28 costimulation in in vivo trafficking and systemic immunity. Collectively, these results support a critical role for CD28 costimulation in EAE induction.  (+info)

Role of B7-CD28/CTLA-4 costimulation and NF-kappa B in allergen-induced T cell chemotaxis by IL-16 and RANTES. (51/1058)

The mechanisms that cause T cell recruitment into inflamed airways of asthmatic individuals are poorly understood. It has been shown previously that both natural exposure to allergen and challenge in the laboratory induce T cell accumulation in the bronchial mucosa of sensitized asthmatics. To study the mechanisms involved in this process, we have used an explant model in which bronchial biopsies taken from mild atopic asthmatic volunteers during fiberoptic bronchoscopy were stimulated in culture for 24 h by the common aeroallergen house dust mite (Dermatophagoides pteronyssinus (Der p)). Analysis of culture supernatants showed that stimulation with Der p significantly enhanced both the generation of T cell chemotactic activity by the mucosal tissue, as assayed in microchemotaxis chambers, and the production of IL-16 and RANTES. Neutralization experiments showed that IL-16 contributed more to the chemotactic activity than RANTES. The fusion protein CTLA-4-Ig, blocking B7:CD28 costimulation, and dexamethasone both significantly reduced the ex vivo production of chemotactic activity and release of IL-16 and RANTES. The proteasome inhibitor Cbz-Ile-Glu(OtBu)-Ala-leucinal also had a significant inhibitory effect on T cell chemotactic activity and IL-16 but not RANTES generation, indicating a role for nuclear factor NF kappa B activation. These results indicate that allergen stimulates cells within the bronchial mucosa to increase IL-16 and RANTES release, both of which contribute to T cell accumulation in asthmatic airways. The allergen-induced chemotactic activity is dependent on cell activation via CD28 and involves, at least partly, NF-kappa B.  (+info)

Analysis of the requirements for the induction of CD4+ T cell alloantigen hyporesponsiveness by ex vivo anti-CD40 ligand antibody. (52/1058)

A major goal of the transplant field is to selectively tolerize only those donor T cells recognizing host alloantigen and mediating graft-vs-host disease (GVHD). Recently, we described an ex vivo approach in which the blockade of the CD40 ligand (CD40L):CD40 costimulatory pathway in bulk MLR cultures induces donor CD4+ T cells to become specifically tolerant to MHC class II-disparate alloantigenic-bearing stimulators, resulting in a profound reduction in GVHD generation in vivo. In studies presented in this work, we investigated the ex vivo requirements for tolerance induction. We found that CD4+ T cells become profoundly more hyporesponsive to alloantigen restimulation with prolonged culture duration such that 7 to 10 but not 4 days is needed to achieve maximum alloantigen hyporesponsiveness as assessed in secondary MLR cultures and GVHD generation. By day 7, both primed and tolerized cells had substantially increased blastogenesis and CD25 expression. Primed but not tolerized cells substantially down-regulated L-selectin expression, indicating that the tolerized cells do not become fully Ag experienced. Both Th1 and Th2 cytokine production is severely impaired by CD40L:CD40 blockade. Analysis of culture supernatants and results from IL-4 and IL-10 knockout mice indicated that GVHD prevention was not mediated by a skewing toward a Th2 phenotype. The addition of IL-4 to the cultures as a survival factor precluded the induction of tolerance in the anti-CD40L-cultured cells. These data provide further impetus for the ex vivo use of anti-CD40L mAb to block GVHD generation.  (+info)

Blockade of CTLA-4 signals inhibits Th2-mediated murine chronic graft-versus-host disease by an enhanced expansion of regulatory CD8+ T cells. (53/1058)

CTLA-4 (CD152) is thought to be a negative regulator of T cell activation. Little is known about the function of CTLA-4 in Th2-type immune responses. We have investigated the effect of initial treatment with anti-CTLA-4 mAb on murine chronic graft-vs-host disease. Transfer of parental BALB/c splenocytes into C57BL/6 x BALB/c F1 mice induced serum IgE production, IL-4 expression by donor CD4+ T cells, and host allo-Ag-specific IgG1 production at 6-9 wk after transfer. Treatment with anti-CTLA-4 mAb for the initial 2 wk significantly reduced IgE and IgG1 production and IL-4 expression. Analysis of the splenic phenotype revealed the enhancement of donor T cell expansion, especially within the CD8 subset, and the elimination of host cells early after anti-CTLA-4 mAb treatment. This treatment did not affect early IFN-gamma expression by CD4+ and CD8+ T cells and anti-host cytolytic activity. Thus, blockade of CTLA-4 greatly enhanced CD8+ T cell expansion, and this may result in the regulation of consequent Th2-mediated humoral immune responses. These findings suggest a new approach for regulating IgE-mediated allergic immune responses by blockade of CTLA-4 during a critical period of Ag sensitization.  (+info)

Vaccination with mouse mammary adenocarcinoma cells coexpressing B7-1 (CD80) and B7-2 (CD86) discloses the dominant effect of B7-1 in the induction of antitumor immunity. (54/1058)

Nonreplicating TS/A mammary adenocarcinoma cells expressing B7-2 (CD86) (TS/A-2) are more immunogenic than those expressing B7-1 (CD80) (TS/A-1), indicating that B7-1 and B7-2 display nonredundant costimulatory effects in inducing antitumor responses. Whereas transfection of B7-2 cDNA into TS/A-1 cells does not improve their immunogenicity, transfection of B7-1 cDNA into TS/A-2 cells (TS/A-2/1) decreases their immunogenicity in a manner that is directly related to the surface levels of B7-1. Ab blocking of B7-1 on TS/A-2/1 cells before their injection in vivo restores the higher immunogenicity characteristic of single B7-2 transfectants, indicating therefore that B7-1 actively modulates the B7-2-dependent costimulation. The expression of B7-1 also modifies quantitatively the balance of endogenous IFN-gamma and IL-4 induced in vivo by TS/A-2 vaccines. In fact, we find that vaccination with TS/A-2/1 cells results in the production of more IFN-gamma and less IL-4 than TS/A-2 vaccines, a pattern comparable to that induced by TS/A-1 cells. Thus, in the TS/A model of antitumor response, B7-1 modulates B7-2-dependent costimulatory effects in a dominant, noncompetitive way.  (+info)

Blocking the common gamma-chain of cytokine receptors induces T cell apoptosis and long-term islet allograft survival. (55/1058)

The common gammac-chain is an essential signaling component shared by all known T cell growth factor (TCGF) receptors (i.e., IL-2, IL-4, IL-7, IL-9, and IL-15). In the present study, we have studied the effect of gammac-chain blockade on T cell activation and allograft rejection. Treatment of B6AF1 (H-2b/d.k) recipient mice with anti-gammac mAbs induced long-term survival of DBA/2 (H-2d) islet allografts (>150 days, n = 8), whereas control Ab-treated mice rejected the islet allografts within 17 days (n = 6). The state of engraftment induced by the anti-gammac mAbs was remarkably stable, as recipient mice bearing the primary islet allografts accepted a second DBA/2 islet allograft without further immunosuppression and systemic administration of high doses of IL-2Ig fusion protein failed to provoke rejection. Blocking the gammac-chain inhibited T cell proliferation and induced T cell apoptosis by repressing expression of Bcl-2. Our data suggest that one means of inducing T cell apoptosis and stable allograft survival can be achieved via gammac-chain blockade.  (+info)

Signals from the IL-9 receptor are critical for the early stages of human intrathymic T cell development. (56/1058)

Highly purified human CD34+ hemopoietic precursor cells differentiate into mature T cells when seeded in vitro in isolated fetal thymic lobes of SCID mice followed by fetal thymus organ culture (FTOC). Here, this chimeric human-mouse FTOC was used to address the role of IL-9 and of the alpha-chain of the IL-9 receptor (IL-9Ralpha) in early human T cell development. We report that addition of the mAb AH9R7, which recognizes and blocks selectively the human high affinity alpha-chain of the IL-9R, results in a profound reduction of the number of human thymocytes. Analysis of lymphoid subpopulations indicates that a highly reduced number of cells undergo maturation from CD34+ precursor cells toward CD4+CD3-CD8-CD1+ progenitor cells and subsequently toward CD4+CD8+ double positive (DP) thymocytes. Addition of IL-9 to the FTOC resulted in an increase in cell number, without disturbing the frequencies of the different subsets. These data suggest that IL-9Ralpha signaling is critical in early T lymphoid development.  (+info)