Adherence to combination antiretroviral therapies in HIV patients of low health literacy. (65/7501)

OBJECTIVE: To test the significance of health literacy relative to other predictors of adherence to treatment for HIV and AIDS. PARTICIPANTS: Community sample of HIV-seropositive men (n = 138) and women (n = 44) currently taking a triple-drug combination of antiretroviral therapies for HIV infection; 60% were ethnic minorities, and 73% had been diagnosed with AIDS. MEASUREMENTS: An adapted form of the Test of Health Literacy in Adults (TOFHLA), a comprehensive health and treatment interview that included 2-day recall of treatment adherence and reasons for nonadherence, and measures of substance abuse, social support, emotional distress, and attitudes toward primary care providers. MAIN RESULTS: Multiple logistic regression showed that education and health literacy were significant and independent predictors of 2-day treatment adherence after controlling for age, ethnicity, income, HIV symptoms, substance abuse, social support, emotional distress, and attitudes toward primary care providers. Persons of low literacy were more likely to miss treatment doses because of confusion, depression, and desire to cleanse their body than were participants with higher health literacy. CONCLUSIONS: Interventions are needed to help persons of low literacy adhere to antiretroviral therapies.  (+info)

Synthesis, characterization and preclinical formulation of a dual-action phenyl phosphate derivative of bromo-methoxy zidovudine (compound WHI-07) with potent anti-HIV and spermicidal activities. (66/7501)

In a systematic effort to develop a microbicide contraceptive capable of preventing transmission of human immunodeficiency virus (HIV), as well as providing fertility control, we have previously identified novel phenyl phosphate derivatives of zidovudine (ZDV) with 5-halo 6-alkoxy substitutions in the thymine ring and halo substitution in the phenyl moiety respectively. Here, we describe the synthesis, characterization, and successful preclinical formulation of our lead compound, 5-bromo-6-methoxy-3'-azidothymidine-5'-(p-bromophenyl) methoxyalaninyl phosphate (WHI-07), which exhibits potent anti-HIV and sperm immobilizing activities. The anti-HIV activity of WHI-07 was tested by measuring viral p24 antigen production and reverse transcriptase activity as markers of viral replication in HIV-1 infected human peripheral blood mononuclear cells (PBMC). WHI-07 inhibited replication of HIV in a concentration-dependent fashion with nanomolar IC50 values. The effects of WHI-07 on human sperm motion kinematics were analysed by computer-assisted sperm analysis (CASA), and its effects on sperm membrane integrity were examined by confocal laser scanning microscopy (CLSM), and high-resolution low-voltage scanning electron microscopy (HR-LVSEM). WHI-07 caused cessation of sperm motility in a concentration- and time-dependent fashion. The in-vitro cytotoxicities of WHI-07 and nonoxynol-9 (N-9) were compared using normal human ectocervical and endocervical epithelial cells by the MTT cell viability assay. Unlike N-9, WHI-07 had no effect upon sperm plasma and acrosomal membrane integrity. N-9 was cytotoxic to normal human ectocervical and endocervical cells at spermicidal doses, whereas WHI-07 was selectively spermicidal. The in-vivo vaginal absorption and vaginal toxicity of 2% gel-microemulsion of WHI-07 was studied in the rabbit model. The sperm immobilizing activity of WHI-07 was 18-fold more potent than that of N-9. Over a 10 day period, there was no irritation or local toxicity to the vaginal epithelia or systemic absorption of WHI-07. Therefore, as a potent anti-HIV agent with spermicidal activity, and lack of mucosal toxicity, WHI-07 may have the clinical potential to become the active ingredient of a vaginal contraceptive for women who are at high risk for acquiring HIV by heterosexual vaginal transmission.  (+info)

Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. (67/7501)

BACKGROUND: In patients infected with human immunodeficiency virus type 1 (HIV-1), combination antiretroviral therapy can result in sustained suppression of plasma levels of the virus. However, replication-competent virus can still be recovered from latently infected resting memory CD4 lymphocytes; this finding raises serious doubts about whether antiviral treatment can eradicate HIV-1. METHODS: We looked for evidence of residual HIV-1 replication in eight patients who began treatment soon after infection and in whom plasma levels of HIV-1 RNA were undetectable after two to three years of antiretroviral therapy. We examined whether there had been changes over time in HIV-1 proviral sequences in peripheral-blood mononuclear cells, which would indicate residual viral replication. We also performed in situ hybridization studies on tissues from one patient to identify cells actively expressing HIV-1 RNA. We estimated the rate of decrease of latent, replication-competent HIV-1 in resting CD4 lymphocytes on the basis of the decrease in the numbers of proviral sequences identified during primary infection and direct sequential measurements of the size of the latent reservoir. RESULTS: Six of the eight patients had no significant variations in proviral sequences during treatment. However, in two patients there was sequence evolution but no evidence of drug-resistant viral genotypes. In one patient, extensive in situ studies provided additional evidence of persistent viral replication in lymphoid tissues. Using two independent approaches, we estimated that the half-life of the latent, replication-competent virus in resting CD4 lymphocytes was approximately six months. CONCLUSIONS: These findings suggest that combination antiretroviral regimens suppress HIV-1 replication in some but not all patients. Given the half-life of latently infected CD4 lymphocytes of about six months, it may require many years of effective antiretroviral treatment to eliminate this reservoir of HIV-1.  (+info)

Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. (68/7501)

BACKGROUND AND METHODS: Although potent antiretroviral therapy can control infection with human immunodeficiency virus type 1 (HIV-1), a long-lived reservoir of infectious virus persists in CD4+ T cells. We investigated this viral reservoir by measuring the levels of cell-associated viral DNA and messenger RNA (mRNA) that are essential for HIV-1 replication. Approximately every 6 months, we obtained samples of peripheral-blood mononuclear cells from five men with long-standing HIV-1 infection who had had undetectable levels of plasma HIV-1 RNA for 20 months or more during treatment with potent antiretroviral drugs. RESULTS: Before treatment, plasma levels of HIV-1 RNA correlated with the levels of cell-associated unintegrated HIV-1 DNA and unspliced viral mRNA. After treatment, plasma levels of HIV-1 RNA fell by more than 2.7 log to undetectable levels. The decrease in cell-associated integrated and unintegrated HIV-1 DNA and mRNA occurred in two phases. The first phase occurred during the initial 500 days of treatment and was characterized by substantial decreases in the levels of DNA and mRNA, but not to undetectable levels. The concentrations of cell-associated unintegrated viral DNA, integrated proviral DNA, and unspliced viral mRNA decreased by 1.25 to 1.46 log. The second phase occurred during the subsequent 300 days or more of treatment and was characterized by a plateau in the levels of HIV-1 DNA and unspliced mRNA. After an initial rapid decline, the ratio of unspliced to multiply spliced viral mRNA (a measure of active viral transcription) stabilized and remained greater than zero at each measurement. CONCLUSIONS: Despite treatment with potent antiretroviral drugs and the suppression of plasma HIV-1 RNA to undetectable levels for 20 months or more, HIV-1 transcription persists in peripheral-blood mononuclear cells. Unless the quasi-steady state levels of HIV DNA and mRNA eventually disappear with longer periods of therapy, these findings suggest that HIV-1 infection cannot be eradicated with current treatments.  (+info)

Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function. (69/7501)

Analysis of CCR5 variants in human immunodeficiency virus, type 1 (HIV-1), high risk cohorts led to the identification of multiple single amino acid substitutions in the amino-terminal third of the HIV-1 co-receptor CCR5 suggesting the possibility of protective and permissive genotypes; unfortunately, the low frequency of these mutations did not led to correlation with function. Therefore, we used analytical methods to assess the functional and structural significance of six of these variant receptors in vitro. These studies showed three categories of effects on CCR5 function. 1) Mutations in the first extracellular domain of CCR5 severely reduce specific ligand binding and chemokine-induced chemotaxis. 2) An extracellular domain variant, A29S, when co-expressed with CD4, supported HIV-1 infection whereas the others do not. 3) The transmembrane region variants of CCR5 support monotropic HIV-1 infection that is blocked by addition of some receptor agonists. Mutations in the first and second transmembrane domains increase RANTES (regulated on activation normal T-cell expressed) binding affinity but did not affect MIP1beta binding affinity presumably based on differences in ligand-receptor interaction sites. Furthermore, the CCR5 transmembrane mutants do not respond to RANTES with the classical bell-shaped chemotactic response curve, suggesting that they are resistant to RANTES-induced desensitization. These data demonstrate that single amino acid changes in the extracellular domains of CCR5 can have profound effects on both HIV-1 co-receptor and specific ligand-induced functions, whereas mutations in the transmembrane domain only affect the response to chemokine ligands.  (+info)

ACTG 260: a randomized, phase I-II, dose-ranging trial of the anti-human immunodeficiency virus activity of delavirdine monotherapy. The AIDS Clinical Trials Group Protocol 260 Team. (70/7501)

ACTG 260 was an open-label, four-arm trial designed to study the safety and anti-human immunodeficiency virus (anti-HIV) activity of delavirdine monotherapy at three ranges of concentrations in plasma compared to those of control therapy with zidovudine or didanosine. Delavirdine doses were adjusted weekly until subjects were within their target trough concentration range (3 to 10, 11 to 30, or 31 to 50 microM). A total of 113 subjects were analyzed. At week 2, the mean HIV type 1 (HIV-1) RNA level declines among the subjects in the three delavirdine arms were similar (0.87, 1.08, and 1.02 log10 for the low, middle, and high target arms, respectively), but by week 8, the subjects in the pooled delavirdine arms showed only a 0.10 log10 reduction. In the subjects in the nucleoside arm, mean HIV-1 RNA level reductions at weeks 2 and 8 were 0.67 and 0.55 log10, respectively. Because viral suppression by delavirdine was not maintained, the trial was stopped early. Rash, which was usually self-limited, developed in 36% of subjects who received delavirdine. Delavirdine monotherapy has potent anti-HIV activity at 2 weeks, but its activity is time limited due to the rapid emergence of drug resistance.  (+info)

In vitro anti-human immunodeficiency virus activities of Z- and E-methylenecyclopropane nucleoside analogues and their phosphoro-L-alaninate diesters. (71/7501)

Nucleoside analogues with a Z- or an E-methylenecyclopropane moiety were synthesized and examined for activity against human immunodeficiency virus type 1 (HIV-1) in vitro. The addition of a methyl phenyl phosphoro-L-alaninate moiety to modestly active analogues resulted in potentiation of their anti-HIV-1 activity. Two such compounds, designated QYL-685 (with 2,6-diaminopurine) and QYL-609 (with adenine), were most potent against HIV-1 in vitro, with 50% inhibitory concentrations of 0.034 and 0.0026 microM, respectively, in MT-2 cell-based assays. Both compounds were active against zidovudine-resistant, didanosine-resistant, and multi-dideoxynucleoside-resistant infectious clones in vitro. Further development of these analogues as potential therapies for HIV-1 infection is warranted.  (+info)

Economic impact of delaying or preventing AIDS in persons with HIV. (72/7501)

OBJECTIVES: To investigate how preventing or delaying the development of acquired immune deficiency syndrome (AIDS) [or other severe conditions related to the human immunodeficiency virus (HIV)] through antiretroviral therapy affects the lifetime cost of HIV/AIDS care, and to compare the cost of therapy with the potential savings in HIV/AIDS-related end-of-life care. METHODS: The analysis utilized a previously developed economic model of HIV/AIDS-related medical care costs under various disease progression scenarios to compare the costs and benefits of antiretroviral therapy. RESULTS: The analysis suggests that: (1) recent projections of long-term medical care cost savings due to highly effective protease inhibitor combination therapies are probably illusory; (2) it makes relatively little difference to the overall long-term cost of HIV/AIDS care whether combination antiretroviral therapy completely prevents or just substantially delays progression to AIDS; and (3) although combination therapy is not likely to save economic resources in the long run, it nevertheless can be highly cost effective. CONCLUSIONS: The health-related benefits of antiretroviral therapy are not free, but appear to be worth the cost.  (+info)