CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. (73/267)

CD4+CD25+ regulatory T cells (Treg) are of critical importance for the maintenance of tolerance. The kidney is frequently involved in autoimmune diseases, such as lupus erythematosus or glomerulonephritis (GN). Therefore, the therapeutic efficacy of Treg in a T cell-dependent murine model of experimental anti-glomerular basement membrane (anti-GBM) GN was tested. Transfer of 1 x 10(6) CD4+CD25+ T cells (day -1) into mice that were previously immunized with rabbit IgG (day -3) and subsequently received an injection of anti-GBM rabbit serum (day 0) significantly attenuated the development of proteinuria when compared with animals that received an injection of 1 x 10(6) CD4+CD25- T cells (control group). Treg injection induced a dramatic decrease of glomerular damage as well as a marked decrease of CD4+ T cell, CD8+ T cell, and macrophage infiltration. Of note, deposition of immune complexes was not prevented by Treg, showing that Treg rather inhibited cell-mediated organ damage than priming of the humoral immune response. Accordingly, a significant reduction of IFN-gamma, TNF-alpha, and TGF-beta1 mRNA in kidneys from animals that received Treg injection was observed. Tracking of enhanced green fluorescence protein-transgenic Treg revealed a predominant migration to secondary lymphoid organs with a significant increase of regulatory T cells (CD4+CD25+CD69-CD45RB(low)) in the lymph nodes. In contrast, enhanced green fluorescence protein-and FoxP3-positive cells by reverse transcription-PCR and CD4+CD25+CD69-CD45RB(low) T cells by flow cytometry in the kidney of nephritic animals were not detected. This report provides first evidence that Treg are potent suppressors of anti-GBM GN. Treg therefore might be of therapeutic value for the treatment of severe GN in humans.  (+info)

Nasal administration of recombinant rat alpha3(IV)NC1 prevents the development of experimental autoimmune glomerulonephritis in the WKY rat. (74/267)

Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by immunization with either collagenase-solubilized rat glomerular basement membrane (GBM) or the recombinant NC1 domain of the alpha3 chain of type IV collagen [alpha3(IV)NC1]. EAG is characterized by circulating and deposited anti-glomerular basement membrane antibodies, focal necrotizing glomerulonephritis with crescent formation, and glomerular infiltration by T cells and macrophages. Previous studies have demonstrated that oral administration of collagenase-solubilized GBM to WKY rats prevented the development of EAG. Nasal administration of specific autoantigens has been reported to be more effective than oral administration in other models of autoimmune disease. The main aim of this study was to investigate further the concept of mucosal tolerance in EAG by examining the effect of nasal administration of recombinant rat alpha3(IV)NC1. Groups of WKY rats with EAG, induced by immunization with recombinant rat alpha3(IV)NC1, were given alpha3(IV)NC1 nasally on 3 consecutive days before immunization, at total cumulative doses of 25, 100, or 250 microg per rat. A dose-dependent effect was observed on the development of EAG. A dose of 25 microg had no effect on disease; 100 microg resulted in a moderate reduction in the severity of nephritis; and 250 microg led to a marked reduction in circulating and deposited antibodies, albuminuria, severity of glomerular abnormalities, and numbers of glomerular CD8+ T cells and macrophages. In addition, there was a reduction in the proliferative response of splenocytes from rats in the high dose group (250 microg) to alpha3(IV)NC1 in vitro. The results from this study clearly demonstrate for the first time that mucosal tolerance in EAG can be induced by nasal administration of recombinant rat alpha3(IV)NC1 and that this approach is effective in the prevention of crescentic glomerulonephritis. Further work using new antigen-specific treatment strategies may provide a novel approach to the treatment of patients with anti-glomerular basement membrane disease.  (+info)

IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. (75/267)

Experimental crescentic glomerulonephritis (GN) is characterized by T helper 1 (Th1) directed nephritogenic immune responses and cell-mediated glomerular injury. IL-12p40, the common cytokine chain for both IL-12 and IL-23, is important in the generation and potentially the maintenance of Th1 responses, whereas IL-18 is a co-factor for Th1 responses that may have systemic and local proinflammatory effects. For testing the hypothesis that both endogenous IL-12p40 and endogenous IL-18 play pathogenetic roles in crescentic GN, accelerated anti-glomerular basement membrane GN was induced in mice genetically deficient in IL-12p40 (IL-12p40-/-), IL-18 (IL-18-/-), or both IL-12p40 and IL-18 (IL-12p40-/-IL-18-/-). Compared with wild-type C57BL/6 mice, IL-12p40-/- mice failed to make a nephritogenic Th1 response and developed markedly reduced crescent formation and renal leukocytic infiltration, despite renal production of chemoattractants and adhesion molecules. IL-18-/- mice developed an intact antigen-specific systemic Th1 response, a similar degree of crescent formation, but fewer glomeruli affected by other severe histologic changes and fewer leukocytes in glomeruli and interstitium. IL-18 was expressed within diseased kidneys. Local production of TNF, IL-1beta, IFN-gamma, CCL3 (MIP-1alpha), and CCL4 (MIP-1beta) was reduced in IL-18-/- mice, demonstrating a local proinflammatory role for IL-18. Combined deletion of IL-12p40 and IL-18 did not result in synergistic effects. Consistent with the hypothesis that inflammation leads to fibrosis, all three groups of deficient mice expressed lower levels of intrarenal TGF-beta1 and/or alpha1(I) procollagen mRNA. These studies demonstrate that in severe experimental crescentic GN, IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 has local proinflammatory roles.  (+info)

Goodpasture autoantibodies unmask cryptic epitopes by selectively dissociating autoantigen complexes lacking structural reinforcement: novel mechanisms for immune privilege and autoimmune pathogenesis. (76/267)

Rapidly progressive glomerulonephritis in Goodpasture disease is mediated by autoantibodies binding to the non-collagenous NC1 domain of alpha3(IV) collagen in the glomerular basement membrane. Goodpasture epitopes in the native autoantigen are cryptic (sequestered) within the NC1 hexamers of the alpha3alpha4alpha5(IV) collagen network. The biochemical mechanism for crypticity and exposure for autoantibody binding is not known. We now report that crypticity is a feature of the quaternary structure of two distinct subsets of alpha3alpha4alpha5(IV) NC1 hexamers: autoantibody-reactive M-hexamers containing only monomer subunits and autoantibody-impenetrable D-hexamers composed of both dimer and monomer subunits. Goodpasture antibodies only breach the quaternary structure of M-hexamers, unmasking the cryptic epitopes, whereas D-hexamers are resistant to autoantibodies under native conditions. The epitopes of D-hexamers are structurally sequestered by dimer reinforcement of the quaternary complex, which represents a new molecular solution for conferring immunologic privilege to a potential autoantigen. Dissociation of non-reinforced M-alpha3alpha4alpha5(IV) hexamers by Goodpasture antibodies is a novel mechanism whereby pathogenic autoantibodies gain access to cryptic B cell epitopes. These findings provide fundamental new insights into immune privilege and the molecular mechanisms underlying the pathogenesis of human autoimmune Goodpasture disease.  (+info)

Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. (77/267)

The participation of renal expression of CD80 and CD86 in the immunopathogenesis of crescentic Th1-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) has not been assessed. Immunohistochemical staining demonstrated prominent upregulation of both molecules in glomeruli of mice with anti-GBM GN, suggesting a potential role for the local expression of CD80 and CD86 in nephritogenic effector T cell responses. For testing this hypothesis, control or inhibitory anti-CD80 and/or anti-CD86 mAb were administered to mice during the effector phase of the disease but after the establishment of a systemic immune response. Anti-CD80 or anti-CD86 mAb treatment had no effect on the development of GN or infiltration of leukocytes into glomeruli; however, administration of anti-CD80/86 mAb attenuated glomerular accumulation of CD4+ T cells and macrophages, crescent formation, and proteinuria, correlating with reduced antigen-specific skin delayed-type hypersensitivity. Attenuated glomerular infiltration of leukocytes in mice that were treated with anti-CD80/86 mAb was associated with decreased intraglomerular expression of adhesion molecules P-selectin and intercellular adhesion molecule-1, as well as attenuated renal mRNA levels of proinflammatory cytokines IFN-gamma and migration inhibitory factor, without reducing chemokine and chemokine receptor expression in the kidney or intraglomerular apoptosis and proliferation. The systemic Th1/Th2 balance (assessed by splenocyte production of IFN-gamma and IL-4 and circulating levels of IgG1 and IgG2a) was not affected by the inhibition of CD80 and CD86. These studies show that CD80 and CD86 are expressed in glomeruli of mice with crescentic anti-GBM GN, in which they play a critical role in facilitating accumulation of Th1 effectors and macrophages, thus exacerbating renal injury.  (+info)

Epitope spreading and autoimmune glomerulonephritis in rats induced by a T cell epitope of Goodpasture's antigen. (78/267)

An amino-terminal region of alpha3 chain of type IV collagen noncollagenous domain [alpha3(IV)NC1] that induces experimental autoimmune glomerulonephritis (EAG) in rats has been identified. Only recombinant antigens that contain a nine-amino acid (AA) span of alpha3(IV)NC1, consistent with a T cell epitope, could induce EAG. It was hypothesized that synthetic peptides of this region should induce EAG. Human and rat peptides of this region were synthesized and rats were immunized to define the nephritogenic epitope. A 13-AA rat peptide induced EAG with proteinuria, decreased renal function, and glomerular basement membrane (GBM)-bound deposits in half of the rats. This peptide induces lymph node cell proliferation and development of antibodies to epitopes of alpha3(IV)NC1 external to the peptide immunogen. Carboxy-terminal extension to 21 amino acids results in all rats' demonstrating anti-GBM antibody and severe EAG. Asparagine at position 19 is critical for EAG induction. None of the 50 rats that were immunized with peptide that contained human sequence with isoleucine at position 19 developed EAG, whereas rat sequence with asparagine 19 induced EAG. Truncation of amino terminal AA of the peptide aborts EAG induction. These studies demonstrate that a T cell epitope of alpha3(IV)NC1 induces lymph node cell proliferation, EAG, and intramolecular epitope spreading; that the length of this peptide influences the formation of anti-GBM antibody; and that the presence of asparagine at position 19 of the peptide is critical to disease induction.  (+info)

Anti-glomerular basement membrane antibodies in the diagnosis of Goodpasture syndrome: a comparison of different assays. (79/267)

BACKGROUND: The role of anti-glomerular basement membrane (GBM) antibodies in the pathogenesis of Goodpasture syndrome (GPS) is firmly established. Untreated, the disease may follow a fulminating course. Early identification of patients has important implications in terms of management and prognosis. Therefore, a diagnostic test for the determination of circulating anti-GBM antibodies, of very high sensitivity and specificity, is necessary. A number of assays, using different antigenic substrates, are available, but studies comparing the 'performances' of the different tests are scarce. METHODS: The aim of our work was to evaluate the sensitivity and specificity of four immunoassay-based anti-GBM antibodies kits. Thirty-four serum samples from 19 GPS patients, 41 pathological and 28 normal controls were studied retrospectively (the follow-up samples were not included in the analysis of performance data). Cut-off limits were derived from receiver operating characteristics curve analysis. RESULTS: All the assays showed a comparable good sensitivity (between 94.7 and 100.0%), whereas specificity varied considerably (from 90.9 to 100.0%). The better performance in terms of sensitivity/specificity was achieved by a fluorescence immunoassay which utilizes a recombinant antigen. CONCLUSION: All the assays have a good performance, with high sensitivity; however, the specificity may vary considerably.  (+info)

Distinct epitopes for anti-glomerular basement membrane alport alloantibodies and goodpasture autoantibodies within the noncollagenous domain of alpha3(IV) collagen: a janus-faced antigen. (80/267)

Alport posttransplantation anti-glomerular basement membrane (GBM) nephritis is mediated by alloantibodies against the noncollagenous (NC1) domains of the alpha3alpha4alpha5(IV) collagen network, which is present in the GBM of the allograft but absent from Alport kidneys. The specificity of kidney-bound anti-GBM alloantibodies from a patient who had autosomal recessive Alport syndrome (ARAS) and developed posttransplantation nephritis was compared with that of Goodpasture autoantibodies from patients with autoimmune anti-GBM disease. Allograft-eluted alloantibodies reacted specifically with alpha3alpha4alpha5 NC1 hexamers, targeting their alpha3NC1 and alpha4NC1 subunits, and recognized a noncontiguous alloepitope formed jointly by the E(A) and E(B) regions of alpha3NC1 domain. In contrast, human Goodpasture autoantibodies recognized the separate E(A) and E(B) autoepitopes of alpha3NC1 but not the composite alloepitope. Molecular modeling of alpha3NC1 revealed that the alloepitope is more accessible within the NC1 hexamers than the partially sequestered Goodpasture autoepitopes. Overall, the specificity of alloantibodies indicated a selective lack of immune tolerance toward the alpha3 and alpha4(IV) collagen chains not expressed in patients with ARAS. Using COL4A3 knockout mice, a model of ARAS, it was shown further that acid-dissociated rather than native alpha3alpha4alpha5 NC1 hexamers elicited murine anti-GBM antibodies most closely resembling human ARAS alloantibodies. In contrast, alpha3NC1 monomers elicited Goodpasture-like murine antibodies, targeting the E(A) and E(B) autoepitopes. Thus, the identity of alpha3NC1 epitopes targeted by anti-GBM antibodies is strongly influenced by the molecular organization of the immunogen. These findings suggest that different isoforms of alpha3(IV) collagen may be implicated in the pathogenesis of ARAS posttransplantation anti-GBM nephritis and Goodpasture disease.  (+info)