Skin grafting in severely contracted socket with the use of 'Compo'. (57/86)

The results of split thickness autologous skin grafting along with the use of a dental impression material (Compo), a thermoplastic substance are presented in a series of 11 patients of acquired, severely contracted, anophthalmic sockets. Only the fornix fixation sutures and the central tarsorrhaphy were employed for the proper placement of graft without the use of retention devices. Artificial eyes were successfully fitted and retained subsequently after 6 weeks of grafting.  (+info)

Restoration of an atrophic eye socket with custom made eye prosthesis, utilizing digital photography. (58/86)

 (+info)

Parent-of-origin effects in SOX2 anophthalmia syndrome. (59/86)

PURPOSE: Sex determining region Y (SRY)-box 2 (SOX2) anophthalmia syndrome is an autosomal dominant disorder manifesting as severe developmental eye malformations associated with brain, esophageal, genital, and kidney abnormalities. The syndrome is usually caused by de novo mutations or deletions in the transcription factor SOX2. To investigate any potential parental susceptibility factors, we set out to determine the parent of origin of the mutations or deletions, and following this, to determine if birth order or parental age were significant factors, as well as whether mutation susceptibility was related to any sequence variants in cis with the mutant allele. METHODS: We analyzed 23 cases of de novo disease to determine the parental origin of SOX2 mutations and deletions using informative single nucleotide polymorphisms and a molecular haplotyping approach. We examined parental ages for SOX2 mutation and deletion cases, compared these with the general population, and adjusted for birth order. RESULTS: Although the majority of subjects had mutations or deletions that arose in the paternal germline (5/7 mutation and 5/8 deletion cases), there was no significant paternal bias for new mutations (binomial test, p=0.16) or deletions (binomial test, p=0.22). For both mutation and deletion cases, there was no significant association between any single nucleotide polymorphism allele and the mutant chromosome (p>0.05). Parents of the subjects with mutations were on average older at the birth of the affected child than the general population by 3.8 years (p=0.05) for mothers and 3.3 years (p=0.66) for fathers. Parents of the subjects with deletions were on average younger than the general population by 3.0 years (p=0.17) for mothers and 2.1 years (p=0.19) for fathers. Combining these data, the difference in pattern of parental age between the subjects with deletions and mutations was evident, with a difference of 6.5 years for mothers (p=0.05) and 5.0 years for fathers (p=0.22), with the mothers and fathers of subjects with mutations being older than the mothers and fathers of subjects with deletions. We observed that 14 of the 23 (61%) affected children were the first-born child to their mother, with 10/15 of the mutation cases (66%) and 4/8 deletion cases (50%) being first born. This is in comparison to 35% of births with isolated congenital anomalies overall who are first born (p=0.008). CONCLUSIONS: Sporadic SOX2 mutations and deletions arose in both the male and female germlines. In keeping with several genetic disorders, we found that SOX2 mutations were associated with older parental age and the difference was statistically significant for mothers (p=0.05), whereas, although not statistically significant, SOX2 deletion cases had younger parents. With the current sample size, there was no evidence that sequence variants in cis surrounding SOX2 confer susceptibility to either mutations or deletions.  (+info)

Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations. (60/86)

 (+info)

Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex. (61/86)

 (+info)

The association of sphenoidal encephalocele and right anophthalmia with septo-optic dysplasia: a case report. (62/86)

 (+info)

RAX and anophthalmia in humans: evidence of brain anomalies. (63/86)

PURPOSE: To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. METHODS: Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR amplification. RESULTS: Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2), ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2). CONCLUSIONS: This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need to be characterized.  (+info)

Analysis of FOXD3 sequence variation in human ocular disease. (64/86)

PURPOSE: The migratory neural crest cell population makes a significant contribution to the anterior segment structures of the eye. Consequently, several anterior segment dysgenesis phenotypes are associated with mutations in genes expressed during neural crest development. The forkhead box D3 (FOXD3) gene encodes a forkhead transcription factor that plays an important role in neural crest specification in vertebrates and therefore may be involved in human eye disease. METHODS: We screened 310 probands with developmental ocular conditions for variations in FOXD3. RESULTS: Six nonsynonymous FOXD3 variants were identified. Four of these changes, c.47C>T (p.Thr16Met), c.359C>T (p.Pro120Leu), c.517A>C (p.Asn173His), and c.818_829dup (p.Arg273_Gly276dup), affected conserved regions and were observed primarily in probands with aniridia or Peters anomaly; out of these four variants, one, p.Arg273_Gly276dup, was not detected in control populations and two, p.Pro120Leu and p.Asn173His, were statistically enriched in cases with aniridia or Peters anomaly. The p.Arg273_Gly276dup variant was seen in a proband with aniridia as well as two additional unrelated probands affected with anophthalmia or congenital cataracts. The p.Asn173His variant affects Helix 2 of the DNA-binding domain and was observed in two unrelated patients with Peters anomaly or aniridia; in both cases, one parent carried the same allele. CONCLUSIONS: FOXD3 variants increase the risk of anterior segment dysgenesis phenotypes in humans. The p.Asn173His mutation affects a residue in the forkhead domain that is 100% conserved among vertebrate orthologs and is predicted to participate in protein-protein interactions. Its phenotypic effects may be modulated by transcriptional cofactors which have yet to be identified.  (+info)