Conserved genomic organisation of Group B Sox genes in insects. (41/829)

BACKGROUND: Sox domain containing genes are important metazoan transcriptional regulators implicated in a wide rage of developmental processes. The vertebrate B subgroup contains the Sox1, Sox2 and Sox3 genes that have early functions in neural development. Previous studies show that Drosophila Group B genes have been functionally conserved since they play essential roles in early neural specification and mutations in the Drosophila Dichaete and SoxN genes can be rescued with mammalian Sox genes. Despite their importance, the extent and organisation of the Group B family in Drosophila has not been fully characterised, an important step in using Drosophila to examine conserved aspects of Group B Sox gene function. RESULTS: We have used the directed cDNA sequencing along with the output from the publicly-available genome sequencing projects to examine the structure of Group B Sox domain genes in Drosophila melanogaster, Drosophila pseudoobscura, Anopheles gambiae and Apis mellifora. All of the insect genomes contain four genes encoding Group B proteins, two of which are intronless, as is the case with vertebrate group B genes. As has been previously reported and unusually for Group B genes, two of the insect group B genes, Sox21a and Sox21b, contain introns within their DNA-binding domains. We find that the highly unusual multi-exon structure of the Sox21b gene is common to the insects. In addition, we find that three of the group B Sox genes are organised in a linked cluster in the insect genomes. By in situ hybridisation we show that the pattern of expression of each of the four group B genes during embryogenesis is conserved between D. melanogaster and D. pseudoobscura. CONCLUSION: The DNA-binding domain sequences and genomic organisation of the group B genes have been conserved over 300 My of evolution since the last common ancestor of the Hymenoptera and the Diptera. Our analysis suggests insects have two Group B1 genes, SoxN and Dichaete, and two Group B2 genes. The genomic organisation of Dichaete and another two Group B genes in a cluster, suggests they may be under concerted regulatory control. Our analysis suggests a simple model for the evolution of group B Sox genes in insects that differs from the proposed evolution of vertebrate Group B genes.  (+info)

Laminin and the malaria parasite's journey through the mosquito midgut. (42/829)

During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.  (+info)

Anopheles gambiae s.l. and Anopheles funestus mosquito distributions at 30 villages along the Kenyan coast. (43/829)

This study investigated whether Anopheles gambiae s.l. and Anopheles funestus Giles mosquito populations were distributed randomly among houses on the coast of Kenya. Sample means and variances of mosquitoes were estimated from bimonthly pyrethrum spray collections at 30 villages from July 1997 through May 1998. In total, 5,476 An. gambiae s.l. and 3,461 An. funestus were collected. The number of An. gambiae s.l. collected was highest in November/December and lowest in May. The number of An. funestus collected was highest during September/October and lowest during May. As the density of mosquitoes decreased, there was a tendency toward randomness in the distribution. The proportion of An. gambiae s.l. and An. funestus mosquitoes collected per house for each sampling period also showed patterns of clustering, with 80% of An. gambiae s.l. collected from <30% of the houses and 80% of An. funestus collected from <20% of the total houses. The total number of mosquitoes collected from any one house ranged from 0 to 121 for An. gambiae s.l. and from 0 to 152 for An. funestus. This coupled with the results of the variance to mean ratio plots suggests extensive clustering in the distribution of An. gambiae s.l. and An. funestus mosquito populations throughout the year along the coast of Kenya.  (+info)

Cloning and characterization of cDNAs encoding putative CTCFs in the mosquitoes, Aedes aegypti and Anopheles gambiae. (44/829)

BACKGROUND: One of the many ascribed functions of CCCTC-binding factor (CTCF) in vertebrates is insulation of genes via enhancer-blocking. Insulation allows genes to be shielded from "cross-talk" with neighboring regulatory elements. As such, endogenous insulator sequences would be valuable elements to enable stable transgene expression. Recently, CTCF joined Su(Hw), Zw5, BEAF32 and GAGA factor as a protein associated with insulator activity in the fruitfly, Drosophila melanogaster. To date, no known insulators have been described in mosquitoes. RESULTS: We have identified and characterized putative CTCF homologs in the medically-important mosquitoes, Aedes aegypti and Anopheles gambiae. These genes encode polypeptides with eleven C2H2 zinc fingers that show significant similarity to those of vertebrate CTCFs, despite at least 500 million years of divergence. The mosquito CTCFs are constitutively expressed and are upregulated in early embryos and in the ovaries of blood-fed females. We have uncovered significant bioinformatics evidence that CTCF is widespread, at least among Drosophila species. Finally, we show that the An. gambiae CTCF binds two known insulator sequences. CONCLUSION: Mosquito CTCFs are likely orthologous to the widely-characterized vertebrate CTCFs and potentially also serve an insulating function. As such, CTCF may provide a powerful tool for improving transgene expression in these mosquitoes through the identification of endogenous binding sites.  (+info)

MicroRNA identification based on sequence and structure alignment. (45/829)

MOTIVATION: MicroRNAs (miRNA) are approximately 22 nt long non-coding RNAs that are derived from larger hairpin RNA precursors and play important regulatory roles in both animals and plants. The short length of the miRNA sequences and relatively low conservation of pre-miRNA sequences restrict the conventional sequence-alignment-based methods to finding only relatively close homologs. On the other hand, it has been reported that miRNA genes are more conserved in the secondary structure rather than in primary sequences. Therefore, secondary structural features should be more fully exploited in the homologue search for new miRNA genes. RESULTS: In this paper, we present a novel genome-wide computational approach to detect miRNAs in animals based on both sequence and structure alignment. Experiments show this approach has higher sensitivity and comparable specificity than other reported homologue searching methods. We applied this method on Anopheles gambiae and detected 59 new miRNA genes. AVAILABILITY: This program is available at http://bioinfo.au.tsinghua.edu.cn/miralign. SUPPLEMENTARY INFORMATION: Supplementary information is available at http://bioinfo.au.tsinghua.edu.cn/miralign/supplementary.htm.  (+info)

Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. (46/829)

BACKGROUND: The malaria parasite Plasmodium must complete a complex developmental life cycle within Anopheles mosquitoes before it can be transmitted into the human host. One day after mosquito infection, motile ookinetes traverse the midgut epithelium and, after exiting to its basal site facing the hemolymph, develop into oocysts. Previously, we have identified hemolymph factors that can antagonize or promote parasite development. RESULTS: We profiled on a genomic scale the transcriptional responses of the A. gambiae midgut to P. berghei and showed that more than 7% of the assessed mosquito transcriptome is differentially regulated during invasion. The profiles suggested that actin- and microtubule-cytoskeleton remodeling is a major response of the epithelium to ookinete penetration. Other responses encompass components of innate immunity, extracellular-matrix remodeling, and apoptosis. RNAi-dependent gene silencing identified both parasite antagonists and agonists among regulators of actin dynamics and revealed that actin polymerization is inhibitory to the invading parasite. Combined transcriptional and reverse-genetic analysis further identified an unexpected dual role of the lipid-trafficking machinery of the hemolymph for both parasite and mosquito-egg development. CONCLUSIONS: We conclude that the determinants of malaria-parasite development in Anopheles include components not only of systemic humoral immunity but also of intracellular, local epithelial reactions. These results provide novel mechanistic insights for understanding malaria transmission in the mosquito vector.  (+info)

In vivo identification of novel regulators and conserved pathways of phagocytosis in A. gambiae. (47/829)

Anopheles gambiae uses effective immune responses, including phagocytosis, to fight microbial infection. We have developed a semiquantitative phagocytosis test and used it in conjunction with dsRNA gene silencing to test the in vivo roles of 71 candidate genes in phagocytosis of Escherichia coli and Staphylococcus aureus. Here, we show that inactivation of 26 genes changes the phagocytic activity by more than 45% and that two pathways similar to those that mediate apoptotic cell removal in Caenorhabditis elegans are used in A. gambiae for phagocytosis of microorganisms. Simultaneous inactivation of the identified regulators of phagocytosis and conserved components defining each signaling pathway permitted provisional assignment of the novel regulators to one or the other pathway. Pathway inactivation enhances at least three times the ability of E. coli and S. aureus to proliferate in the mosquito. Interestingly, mosquito survival is not compromised even if both pathways are perturbed simultaneously.  (+info)

Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. (48/829)

Apoptosis is implicated in the life cycle of the malaria parasite in mosquitoes. The genome project for the primary malaria vector Anopheles gambiae showed a significant expansion of the inhibitor of apoptosis protein (IAP) and caspase gene families in comparison with Drosophila. However, because of extensive sequence divergence, no orthologue was identified for the reaper/grim-like IAP antagonist genes that have a pivotal role in cell death regulation in Drosophila. Using a customized searching strategy, we identified michelob_x(mx), a gene not predicted by the genome project, as the missing IAP antagonist in the An. gambiae and other mosquito genomes. Mx has a highly conserved amino-terminal IAP-binding motif. Expression of Mx induces rapid cell death in insect cell lines and is a potent tissue ablator in vivo. Its proapoptotic activity is totally dependent on the IAP-binding motif. Like reaper in Drosophila, mx is transcriptionally induced by ultraviolet irradiation to mediate cell death.  (+info)