The C terminus of annexin II mediates binding to F-actin. (25/431)

Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains the binding sites for anionic phospholipids, heparin, and F-actin, whereas the p11 subunit provides a regulatory function. The F-actin-binding site is presently unknown. In the present study we have utilized site-directed mutagenesis to create annexin II mutants with truncations in the C terminus of the molecule. Interestingly, a mutant annexin II lacking its C-terminal 16, 13, or 9 amino acids was unable to bind to F-actin but still retained its ability to interact with both anionic phospholipids and heparin. Recombinant AIIt, composed of wild-type p11 subunits and the mutant annexin II subunits, was also unable to bundle F-actin. This loss of F-actin bundling activity was directly attributable to the inability of mutant AIIt to bind F-actin. These results establish for the first time that the annexin II C-terminal amino acid residues, LLYLCGGDD, participate in F-actin binding.  (+info)

Retinoic acid reduces p11 protein levels in bronchial epithelial cells by a posttranslational mechanism. (26/431)

p11 is a member of the S100 family of proteins, is the cellular ligand of annexin II, and interacts with the carboxyl region of 85-kDa cytosolic phospholipase A(2) (cPLA(2)), inhibiting cPLA(2) activity and arachidonic acid (AA) release. We studied the effect of retinoic acid (RA) on PLA(2) activity in human bronchial epithelial cells and whether p11 contributes to these effects. The addition of 10(-6) M RA resulted in reduced p11 protein levels at 4 days, with the greatest effect observed on days 6 and 7. This effect was dose related (10(-6) to 10(-9) M). RA treatment (10(-6) M) had no effect on cPLA(2) protein levels. p11 mRNA levels were unchanged at 6 and 8 days of treatment (correlating with maximum p11 protein reduction). Treatment with RA reduced p11 levels in control cells and in cells transfected with a p11 expression vector, suggesting a posttranslational mechanism. Lactacystin (10(-6) M), an inhibitor of the human 26S proteasome, blocked the decrease in p11 observed with RA treatment. Compared with control cells (n = 3), RA-treated cells (n = 3) had significantly increased AA release after treatment with the calcium ionophore A-23187 (P = 0.006). Therefore, RA reduces p11 protein expression and increases PLA(2) activity and AA release.  (+info)

The annexinopathies: a new category of diseases. (27/431)

The annexins are a family of highly homologous phospholipid binding proteins, which share a four-domain structure, with one member of the family - annexin VI - having a duplication consisting of eight domains. Thus far, ten annexins have been described in mammals. Although the biological functions of the annexins have not been definitively established, two human diseases involving annexin abnormalities ('annexinopathies') have been identified as of the time of writing. Overexpression of annexin II occurs in the leukocytes of a subset of patients having a hemorrhagic form of acute promyelocytic leukemia. Underexpression of annexin V occurs on placental trophoblasts in the antiphospholipid syndrome and in preeclampsia. Also, an animal model has been described in which annexin VII is underexpressed and is associated with disease, but the relevance of this animal model to human disease is not yet understood. Future research is likely to elucidate additional 'annexinopathies'.  (+info)

Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. (28/431)

Annexin II is a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which is particularly enriched on early endosomal membranes and has been implicated in participating in endocytic events. In contrast to other endosomal annexins the association of annexin II with its target membrane can occur in the absence of Ca(2+) in a manner depending on the unique N-terminal domain of the protein. However, endosome binding of annexin II does not require formation of a protein complex with the intracellular ligand S100A10 (p11) as an annexin II mutant protein (PM AnxII) incapable of interacting with p11 is still present on endosomal membranes. Fusion of the N-terminal sequence of this PM AnxII (residues 1-27) to the conserved protein core of annexin I transfers the capability of Ca(2+)-independent membrane binding to the otherwise Ca(2+)-sensitive annexin I. These results underscore the importance of the N-terminal sequence of annexin II for the Ca(2+)-independent endosome association and argue for a direct interaction of this sequence with an endosomal membrane receptor.  (+info)

S100 protein-annexin interactions: a model of the (Anx2-p11)(2) heterotetramer complex. (29/431)

The (Anx2)(2)(p11)(2) heterotetramer has been implicated in endo- and exocytosis in vivo and in liposome aggregation in vitro. Here we report on the modelling of the heterotetramer complex using docking algorithms. Two types of models are generated-heterotetramer and heterooctamer. On the basis of the agreement between the calculated (X-ray) electron density and the observed projected density from cryo-electron micrographs on the one hand, and calculated energy criteria on the other hand, the heterotetramer models are proposed as the most probable, and one of them is selected as the best model. Analysis of this model at an atomic level suggests that the interaction between the Anx2 core and p11 has an electrostatic character, being stabilised primarily through charged residues.  (+info)

Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II. (30/431)

Genetic evidence demonstrates the importance of plasminogen activation in the migration of macrophages to sites of injury and inflammation, their removal of necrotic debris, and their clearance of fibrin. These studies identified the plasminogen binding protein annexin II on the surface of macrophages and determined its role in their ability to degrade and migrate through extracellular matrices. Calcium-dependent binding of annexin II to RAW264.7 macrophages was shown using flow cytometry and Western blot analysis of EGTA eluates. Ligand blots demonstrated that annexin II comigrates with one of several proteins in lysates and membranes derived from RAW264.7 macrophages that bind plasminogen. Preincubation of RAW264.7 macrophages with monoclonal anti-annexin II IgG inhibited (35%) their binding of 125I-Lys-plasminogen. Likewise, plasmin binding to human monocyte-derived macrophages and THP-1 monocytes was inhibited (50% and 35%, respectively) when cells were preincubated with anti-annexin II IgG. Inhibition of plasminogen binding to annexin II on RAW264.7 macrophages significantly impaired their ability to activate plasminogen and degrade [3H]-glucosamine-labeled extracellular matrices. The migration of THP-1 monocytes through a porous membrane, in response to monocyte chemotactic protein-1, was blocked when the membranes were coated with extracellular matrix. The addition of plasminogen to the monocytes restored their ability to migrate through the matrix-coated membrane. Preincubation of THP-1 monocytes with anti-annexin II IgG inhibited (60%) their plasminogen-dependent chemotaxis through the extracellular matrix. These studies identify annexin II as a plasminogen binding site on macrophages and indicate an important role for annexin II in their invasive and degradative phenotype.  (+info)

Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. (31/431)

Annexins (ANXs) are a family of proteins with calcium-dependent phospholipid binding properties. Although inhibition of phospholipase A2 (PLA2) by ANX-I has been reported, the mechanism is still controversial. Previously we proposed a 'specific interaction' model for the mechanism of cytosolic PLA2 (cPLA2) inhibition by ANX-I [Kim et al., FEBS Lett. 343 (1994) 251-255]. Here we have studied the cPLA2 inhibition mechanism using ANX-I, N-terminally deleted ANX-I (DeltaANX-I), ANX-II, ANX-II(2)P11(2), ANX-III, and ANX-V. Under the conditions for the specific interaction model, ANX-I, DeltaANX-I, and ANX-II(2)P11(2) inhibited cPLA2, whereas inhibition by ANX-II and ANX-III was negligible. Inhibition by ANX-V was much smaller than that by ANX-I. The protein-protein interactions between cPLA2 and ANX-I, DeltaANX-I, and ANX-II(2)P11(2) were verified by immunoprecipitation. We can therefore conclude that inhibition of cPLA2 by specific interaction is not a general function of all ANXs, and is rather a specific function of ANX-I. The results are consistent with the specific interaction model.  (+info)

The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? (32/431)

The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as shown by the red arrows. The significance of each adhesive state for cell behavior is indicated beneath the cells. The weak adhesive state would be consistent with cells undergoing apoptosis during remodeling or those undergoing cytokinesis. The strong adhesive state is characteristic of a differentiated, quiescent cell, whereas cells in the intermediate adhesive state would include those involved in responding to injury during wound healing or in tissue remodeling during morphogenesis.  (+info)