Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. (57/741)

The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.  (+info)

Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation. (58/741)

The NgCAM-related cell adhesion molecule (NrCAM) is an immunoglobulin superfamily member of the L1 subgroup that interacts intracellularly with ankyrins. We reveal that the absence of NrCAM causes the formation of mature cataracts in the mouse, whereas significant pathfinding errors of commissural axons at the midline of the spinal cord or of proprioceptive axon collaterals are not detected. Cataracts, the most common cause of visual impairment, are generated in NrCAM-deficient mice by a disorganization of lens fibers, followed by cellular disintegration and accumulation of cellular debris. The disorganization of fiber cells becomes histologically distinct during late embryonic development and includes abnormalities of the cytoskeleton and of connexin50-containing gap junctions. Furthermore, analysis of lenses of ankyrin-B mutant mice also reveals a disorganization of lens fibers at postnatal day 1, indistinguishable from that generated by the absence of NrCAM, indicating that NrCAM and ankyrin-B are required to maintain contact between lens fiber cells. Also, these studies provide genetic evidence of an interaction between NrCAM and ankyrin-B.  (+info)

Nrarp is a novel intracellular component of the Notch signaling pathway. (59/741)

The Lin12/Notch receptors regulate cell fate during embryogenesis by activating the expression of downstream target genes. These receptors signal via their intracellular domain (ICD), which is released from the plasma membrane by proteolytic processing and associates in the nucleus with the CSL family of DNA-binding proteins to form a transcriptional activator. How the CSL/ICD complex activates transcription and how this complex is regulated during development remains poorly understood. Here we describe Nrarp as a new intracellular component of the Notch signaling pathway in Xenopus embryos. Nrarp is a member of the Delta-Notch synexpression group and encodes a small protein containing two ankyrin repeats. Nrarp expression is activated in Xenopus embryos by the CSL-dependent Notch pathway. Conversely, overexpression of Nrarp in embryos blocks Notch signaling and inhibits the activation of Notch target genes by ICD. We show that Nrarp forms a ternary complex with the ICD of XNotch1 and the CSL protein XSu(H) and that in embryos Nrarp promotes the loss of ICD. By down-regulating ICD levels, Nrarp could function as a negative feedback regulator of Notch signaling that attenuates ICD-mediated transcription.  (+info)

LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. (60/741)

This study shows that L1-like adhesion (LAD-1), the sole Caenorhabditis elegans homologue of the L1 family of neuronal adhesion molecules, is required for proper development of the germline and the early embryo and embryonic and gonadal morphogenesis. In addition, the ubiquitously expressed LAD-1, which binds to ankyrin-G, colocalizes with the C. elegans ankyrin, UNC-44, in multiple tissues at sites of cell-cell contact. Finally, we show that LAD-1 is phosphorylated in a fibroblast growth factor receptor (FGFR) pathway-dependent manner on a tyrosine residue in the highly conserved ankyrin-binding motif, FIGQY, which was shown previously to abolish the L1 family of cell adhesion molecule (L1CAM) binding to ankyrin in cultured cells. Immunofluorescence studies revealed that FIGQY-tyrosine-phosphorylated LAD-1 does not colocalize with nonphosphorylated LAD-1 or UNC-44 ankyrin but instead is localized to sites that undergo mechanical stress in polarized epithelia and axon-body wall muscle junctions. These findings suggest a novel ankyrin-independent role for LAD-1 related to FGFR signaling. Taken together, these results indicate that L1CAMs constitute a family of ubiquitous adhesion molecules, which participate in tissue morphogenesis and maintaining tissue integrity in metazoans.  (+info)

Rat cardiac contractile dysfunction induced by Ca2+ overload: possible link to the proteolysis of alpha-fodrin. (61/741)

The aim of the present study was to examine the mechanisms of Ca2+ overload-induced contractile dysfunction in rat hearts independent of ischemia and acidosis. Experiments were performed on 30 excised cross-circulated rat heart preparations. After hearts were exposed to high Ca2+, there was a contractile failure associated with a parallel downward shift of the linear relation between myocardial O(2) consumption per beat and systolic pressure-volume area (index of a total mechanical energy per beat) in left ventricles from all seven hearts that underwent the protocol. This result suggested a decrease in O(2) consumption for total Ca2+ handling in excitation-contraction coupling. In the hearts that underwent the high Ca2+ protocol and had contractile failure, we found marked proteolysis of a cytoskeleton protein, alpha-fodrin, whereas other proteins were unaffected. A calpain inhibitor suppressed the contractile failure by high Ca2+, the decrease in O(2) consumption for total Ca2+ handling, and membrane alpha-fodrin degradation. We conclude that the exposure to high Ca2+ may induce contractile dysfunction possibly by suppressing total Ca2+ handling in excitation-contraction coupling and degradation of membrane alpha-fodrin via activation of calpain.  (+info)

Erythrocyte ankyrin promoter mutations associated with recessive hereditary spherocytosis cause significant abnormalities in ankyrin expression. (62/741)

Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In several kindreds with recessive, ankyrin-deficient HS, mutations have been identified in the ankyrin promoter that have been proposed to decrease ankyrin synthesis. We analyzed the effects of two mutations, -108T to C and -108T to C in cis with -153G to A, on ankyrin expression. No difference between wild type and mutant promoters was demonstrated in transfection or gel shift assays in vitro. Transgenic mice with a wild type ankyrin promoter linked to a human (A)gamma-globin gene expressed gamma-globin in 100% of erythrocytes in a copy number-dependent, position-independent manner. Transgenic mice with the mutant -108 promoter demonstrated variegated gamma-globin expression, but showed copy number-dependent and position-independent expression similar to wild type. Severe effects in ankyrin expression were seen in mice with the linked -108/-153 mutations. Three transgenic lines had undetectable levels of (A)gamma-globin mRNA, indicating position-dependent expression, and four lines expressed significantly lower levels of (A)gamma-globin mRNA than wild type. Two of four expressing lines showed variegated gamma-globin expression, and there was no correlation between transgene copy number and RNA level, indicating copy number-independent expression. These data are the first demonstration of functional defects caused by HS-related, ankyrin gene promoter mutations.  (+info)

Analysis of integral membrane protein contributions to the deformability and stability of the human erythrocyte membrane. (63/741)

Three major hypotheses have been proposed to explain the role of membrane-spanning proteins in establishing/maintaining membrane stability. These hypotheses ascribe the essential contribution of integral membrane proteins to (i) their ability to anchor the membrane skeleton to the lipid bilayer, (ii) their capacity to bind and stabilize membrane lipids, and (iii) their ability to influence and regulate local membrane curvature. In an effort to test these hypotheses in greater detail, we have modified both the membrane skeletal and lipid binding interactions of band 3 (the major membrane-spanning and skeletal binding protein of the human erythrocyte membrane) and have examined the impact of these modifications on erythrocyte membrane morphology, deformability, and stability. The desired changes in membrane skeletal and protein-lipid interactions were induced by 1) reaction of the cells with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), an inhibitor of band 3-mediated anion transport that dissociates band 3 into dimers (increasing its surface area in contact with lipid) and severs band 3 linkages to the membrane skeleton; 2) a fragment of ankyrin that ruptures the same ankyrin-band 3 bridge to the membrane skeleton, but drives the band 3 subunit equilibrium toward the tetramer (i.e. decreasing the band 3 surface area in contact with lipid); and 3) an antibody to the ankyrin-binding site on band 3 that promotes the same changes in band 3 skeletal and lipid interactions as the ankyrin fragment. We observed that although DIDS induced echinocytic morphological changes in the treated erythrocytes, it had little impact on either membrane deformability or stability. In contrast, resealing of either the ankyrin fragment or anti-band 3 IgG into erythrocytes caused spontaneous membrane fragmentation and loss of deformability/stability. Because these and other new observations cannot all be reconciled with any single hypothesis on membrane stability, we suggest that more than one hypothesis may be operative and provide an explanation of how each might individually contribute to net membrane stability.  (+info)

Effect of pH on the self-association of erythrocyte band 3 in situ. (64/741)

The human erythrocyte anion exchanger (band 3) contains a cytoplasmic domain (cdb3) that exists in a reversible, pH-dependent structural equilibrium among three native conformations. To understand how this conformational equilibrium might influence the association state of band 3, we have incubated stripped erythrocyte membranes in solutions ranging from pH 6.0 to pH 10.5 and have examined the oligomeric state of the protein by size exclusion high performance liquid chromatography. We demonstrate that incubation of membranes in slightly acidic conditions favors dimer formation, whereas extended incubation at higher pHs (pH>9) leads to irreversible formation of an oligomeric species larger than the tetramer. Since the pH dependence of the conformational state of the cytoplasmic domain exhibits a similar pH profile, we suggest that the conformation of the cytoplasmic domain can modulate the self-association of band 3. Importantly, this modulation would appear to require the structural interactions present within the intact protein, since the isolated membrane-spanning domain does not display any pH dependence of association. The irreversible nature of the alkali-induced aggregation further suggests that a secondary reaction subsequent to band 3 association is required to stabilize the high molecular weight aggregate. Although we were able to eliminate covalent bond formation in this irreversible aggregation process, the exact nature of the secondary reaction remains to be elucidated.  (+info)