The ankyrin repeat-containing adaptor protein Tvl-1 is a novel substrate and regulator of Raf-1. (1/285)

Tvl-1 is a 269-amino acid ankyrin repeat protein expressed primarily in thymus, lung, and testes that was identified by screening a murine T-cell two-hybrid cDNA library for proteins that associate with the serine-threonine kinase Raf-1. The interaction of Tvl-1 with Raf-1 was confirmed by co-immunoprecipitation of the two proteins from COS-1 cells transiently transfected with Tvl-1 and Raf-1 expression constructs as well as by co-immunoprecipitation of the endogenous proteins from CV-1 and NB2 cells. Tvl-1 interacts with Raf-1 via its carboxyl-terminal ankyrin repeat domain. The same domain also mediates Tvl-1 homodimerization. Tvl-1 was detected by immunofluorescence in both the cytoplasm and the nucleus suggesting that in addition to Raf-1 it may also interact with nuclear proteins. Activated Raf-1 phosphorylates Tvl-1 both in vitro and in vivo. In baculovirus-infected Sf9 insect cells, Tvl-1 potentiates the activation of Raf-1 by Src and Ras while in COS-1 cells it potentiates the activation of Raf-1 by EGF. These data suggest that Tvl-1 is both a target as well as a regulator of Raf-1. The human homologue of Tvl-1 maps to chromosome 19p12, upstream of MEF2B with the two genes in a head to head arrangement.  (+info)

Improved sensitivity of PCR for diagnosis of human granulocytic ehrlichiosis using epank1 genes of Ehrlichia phagocytophila-group ehrlichiae. (2/285)

The agent of human granulocytic ehrlichiosis (HGE), Ehrlichia phagocytophila, and Ehrlichia equi probably comprise variants of a single Ehrlichia species now called the Ehrlichia phagocytophila genogroup. These variants share a unique 153-kDa protein antigen with ankyrin repeat motifs encoded by the epank1 gene. The epank1 gene was investigated as an improved target for PCR diagnosis of HGE compared with the currently used 16S rRNA gene target. Primers for epank1 flanking a region that spans part of the 5' ankyrin repeat coding region and part of the unique 3' region were synthesized. Blood samples from 31 patients with suspected HGE who were previously tested by 16S rRNA gene (16S) PCR and indirect immunofluorescent antibody test (IFA) were retrospectively tested with the epank1 primers. Eleven patients were 16S PCR positive and had a seroconversion detected by IFA (group A), 10 patients were 16S PCR negative but had a seroconversion detected by IFA (group B), and 10 patients were 16S PCR negative and seronegative (group C). Ten of the 11 group A patients were epank1 PCR positive, all 10 of the group B patients were epank1 PCR positive, and all of the PCR-negative and seronegative patients (group C) were epank1 PCR negative. The epank1 primers are more sensitive than the previously used 16S rRNA gene primers and therefore may be more useful in diagnostic testing for HGE.  (+info)

Alastrim smallpox variola minor virus genome DNA sequences. (3/285)

Alastrim variola minor virus, which causes mild smallpox, was first recognized in Florida and South America in the late 19th century. Genome linear double-stranded DNA sequences (186,986 bp) of the alastrim virus Garcia-1966, a laboratory reference strain from an outbreak associated with 0.8% case fatalities in Brazil in 1966, were determined except for a 530-bp fragment of hairpin-loop sequences at each terminus. The DNA sequences (EMBL Accession No. Y16780) showed 206 potential open reading frames for proteins containing >/=60 amino acids. The amino acid sequences of the putative proteins were compared with those reported for vaccinia virus strain Copenhagen and the Asian variola major strains India-1967 and Bangladesh-1975. About one-third of the alastrim viral proteins were 100% identical to correlates in the variola major strains and the remainder were >/=95% identical. Compared with variola major virus DNA, alastrim virus DNA has additional segments of 898 and 627 bp, respectively, within the left and right terminal regions. The former segment aligns well with sequences in other orthopoxviruses, particularly cowpox and vaccinia viruses, and the latter is apparently alastrim-specific.  (+info)

SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. (4/285)

Notch proteins are transmembrane receptors that mediate intercell communication and direct individual cell fate decisions. The activated intracellular form of Notch, NotchIC, translocates to the nucleus, where it targets the DNA binding protein CBF1. CBF1 mediates transcriptional repression through the recruitment of an SMRT-histone deacetylase-containing corepressor complex. We have examined the mechanism whereby NotchIC overcomes CBF1-mediated transcriptional repression. We identified SKIP (Ski-interacting protein) as a CBF1 binding protein in a yeast two-hybrid screen. Both CBF1 and SKIP are highly conserved evolutionarily, and the SKIP-CBF1 interaction is also conserved in assays using the Caenorhabditis elegans and Drosophila melanogaster SKIP homologs. Protein-protein interaction assays demonstrated interaction between SKIP and the corepressor SMRT. More surprisingly, SKIP also interacted with NotchIC. The SMRT and NotchIC interactions were mutually exclusive. In competition binding experiments SMRT displaced NotchIC from CBF1 and from SKIP. Contact with SKIP is required for biological activity of NotchIC. A mutation in the fourth ankyrin repeat that abolished Notch signal transduction did not affect interaction with CBF1 but abolished interaction with SKIP. Further, NotchIC was unable to block muscle cell differentiation in myoblasts expressing antisense SKIP. The results suggest a model in which NotchIC activates responsive promoters by competing with the SMRT-corepressor complex for contacts on both CBF1 and SKIP.  (+info)

Analysis of notch lacking the carboxyl terminus identified in Drosophila embryos. (5/285)

The cell surface receptor Notch is required during development of Drosophila melanogaster for differentiation of numerous tissues. Notch is often required for specification of precursor cells by lateral inhibition and subsequently for differentiation of tissues from these precursor cells. We report here that certain embryonic cells and tissues that develop after lateral inhibition, like the connectives and commissures of the central nervous system, are enriched for a form of Notch not recognized by antibodies made against the intracellular region carboxy-terminal of the CDC10/Ankyrin repeats. Western blotting and immunoprecipitation analyses show that Notch molecules lacking this region are produced during embryogenesis and form protein complexes with the ligand Delta. Experiments with cultured cells indicate that Delta promotes accumulation of a Notch intracellular fragment lacking the carboxyl terminus. Furthermore, Notch lacking the carboxyl terminus functions as a receptor for Delta. These results suggest that Notch activities during development include generation and activity of a truncated receptor we designate NDeltaCterm.  (+info)

Molecular cloning and characterization of SRAM, a novel insect rel/ankyrin-family protein present in nuclei. (6/285)

Previously, we purified a 59-kDa protein that binds to the kappaB motif of the Sarcophaga lectin gene. Here we report its cDNA cloning and some of its characteristics as a novel member of the Rel/Ankyrin-family. This protein, named SRAM, contained a Rel homology domain, a nuclear localization signal and 4 ankyrin repeats, but lacked the Ser-rich domain and PEST sequence that Relish contained. We found that SRAM was localized in the nuclei of NIH-Sape-4 cells, which are an embryonic cell line of Sarcophaga. The Sarcophaga lectin gene promoter containing tandem repeats of the kappaB motifs was activated in NIH-Sape-4 cells. In Drosophila mbn-2 cells, Dif alone activated this reporter gene and a cooperative effect was detected when SRAM and Dif were co-transfected, although SRAM alone did not activate it. This is the first report of a Rel/Ankyrin molecule that exists in the nuclei.  (+info)

The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization. (7/285)

Ankyrins are linker proteins, which connect various membrane proteins, including members of the L1 family of neural cell adhesion molecules, with the submembranous actin-spectrin skeleton. Here we report the cloning and characterization of a second, novel Drosophila ankyrin gene (Dank2) that appears to be the result of a gene duplication event during arthropod evolution. The Drosophila L1-type protein neuroglian interacts with products from both Drosophila ankyrin genes. Whereas the previously described ankyrin gene is ubiquitously expressed during embryogenesis, the expression of Dank2 is restricted to the nervous system in the Drosophila embryo. The absence of neuroglian protein in a neuroglian null mutant line causes decreased levels of Dank2 protein in most neuronal cells. This suggests that neuroglian is important for the stability of Dank2 protein. However, neuroglian is not required for Dank2 axonal localization. In temperature-sensitive neuroglian mutants in which neuroglian protein is mislocated at the restrictive temperature to an intracellular location in the neuronal soma, Dank2 protein can still be detected along embryonic nerve tracts.  (+info)

Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. (8/285)

CARP, a cardiac doxorubicin (adriamycin)-responsive protein, has been identified as a nuclear protein whose expression is downregulated in response to doxorubicin. In the present study, we tested the hypothesis that CARP serves as a reliable genetic marker of cardiac hypertrophy in vivo and in vitro. CARP expression was markedly increased in 3 distinct models of cardiac hypertrophy in rats: constriction of abdominal aorta, spontaneously hypertensive rats, and Dahl salt-sensitive rats. In addition, we found that CARP mRNA levels correlate very strongly with the brain natriuretic peptide mRNA levels in Dahl rats. Transient transfection assays into primary cultures of neonatal rat cardiac myocytes indicate that transcription from the CARP and brain natriuretic peptide promoters is stimulated by overexpression of p38 and Rac1, components of the stress-activated mitogen-activated protein kinase pathways. Mutation analysis and electrophoretic mobility shift assays indicated that the M-CAT element can serve as a binding site for nuclear factors, and this element is important for the induction of CARP promoter activity by p38 and Rac1. Thus, our data suggest that M-CAT element is responsible for the regulation of the CARP gene in response to the activation of stress-responsive mitogen-activated protein kinase pathways. Moreover, given that activation of these pathways is associated with cardiac hypertrophy, we propose that CARP represents a novel genetic marker of cardiac hypertrophy.  (+info)