Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes. (33/262)

A tyrosinase-directed therapeutic approach for treating malignant melanoma uses depigmenting phenolic prodrugs such as 4-hydroxyanisole (4-HA) for oxidation by melanoma tyrosinase to form cytotoxic o-quinones. However, in a recent clinical trial, both renal and hepatic toxicity were reported as side effects of 4-HA therapy. In the following, 4-HA (200 mg/kg i.p.) administered to mice caused a 7-fold increase in plasma transaminase toxicity, an indication of liver toxicity. Furthermore, 4-HA induced-cytotoxicity toward isolated hepatocytes was preceded by glutathione (GSH) depletion, which was prevented by cytochrome p450 inhibitors that also partly prevented cytotoxicity. The 4-HA metabolite formed by NADPH/microsomes and GSH was identified as a hydroquinone mono-glutathione conjugate. GSH-depleted hepatocytes were much more prone to cytotoxicity induced by 4-HA or its reactive metabolite hydroquinone (HQ). Dicumarol (an NAD(P)H/quinone oxidoreductase inhibitor) also potentiated 4-HA- or HQ-induced toxicity whereas sorbitol, an NADH-generating nutrient, prevented the cytotoxicity. Ethylenediamine (an o-quinone trap) did not prevent 4-HA-induced cytotoxicity, which suggests that the cytotoxicity was not caused by o-quinone as a result of 4-HA ring hydroxylation. Deferoxamine and the antioxidant pyrogallol/4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL) did not prevent 4-HA-induced cytotoxicity, therefore excluding oxidative stress as a cytotoxic mechanism for 4-HA. A negligible amount of formaldehyde was formed when 4-HA was incubated with rat microsomal/NADPH. These results suggest that the 4-HA cytotoxic mechanism involves alkylation of cellular proteins by 4-HA epoxide or p-quinone rather than involving oxidative stress.  (+info)

Water-soluble constituents of anise: new glucosides of anethole glycol and its related compounds. (34/262)

From the water-soluble portion of the methanolic extract of the fruit of anise (Pimpinella anisum L.), which has been used as a spice and medicine since antiquity, twelve new and five known glucosides of phenylpropanoids, including four stereoisomers of anethole glycol 2'-O-beta-D-glucopyranoside and four stereoisomers of 1'-(4-hydroxyphenyl)propane-1',2'-diol 2'-O-beta-D-glucopyranoside were isolated together with anethole glycols and guaiacyl glycerol. The structures of the new compounds were clarified by spectral investigation.  (+info)

Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by o methylation of 2,4,6-trichlorophenol. (35/262)

Cork taint is a musty or moldy off-odor in wine mainly caused by 2,4,6-trichloroanisole (2,4,6-TCA). We examined the role of 14 fungal strains isolated from cork samples in the production of 2,4,6-TCA by O methylation of 2,4,6-trichlorophenol (2,4,6-TCP). The fungal strains isolated belong to the genera Penicillium (four isolates); Trichoderma (two isolates); and Acremonium, Chrysonilia, Cladosporium, Fusarium, Mortierella, Mucor, Paecilomyces, and Verticillium (one isolate each). Eleven of these strains could produce 2,4,6-TCA when they were grown directly on cork in the presence of 2,4,6-TCP. The highest levels of bioconversion were carried out by the Trichoderma and Fusarium strains. One strain of Trichoderma longibrachiatum could also efficiently produce 2,4,6-TCA in liquid medium. However, no detectable levels of 2,4,6-TCA production by this strain could be detected on cork when putative precursors other than 2,4,6-TCP, including several anisoles, dichlorophenols, trichlorophenols, or other highly chlorinated compounds, were tested. Time course expression studies with liquid cultures showed that the formation of 2,4,6-TCA was not affected by a high concentration of glucose (2% or 111 mM) or by ammonium salts at concentrations up to 60 mM. In T. longibrachiatum the O methylation of 2,4,6-TCP was catalyzed by a mycelium-associated S-adenosyl-L-methionine (SAM)-dependent methyltransferase that was strongly induced by 2,4,6-TCP. The reaction was inhibited by S-adenosyl-L-homocysteine, an inhibitor of SAM-dependent methylation, suggesting that SAM is the natural methyl donor. These findings increase our understanding of the mechanism underlying the origin of 2,4,6-TCA on cork, which is poorly understood despite its great economic importance for the wine industry, and they could also help us improve our knowledge about the biodegradation and detoxification processes associated with chlorinated phenols.  (+info)

Differences in cytochrome P450 forms involved in the metabolism of N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a novel sigma ligand, in human liver and intestine. (36/262)

N,N-Dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100) has been developed to treat subjects with schizophrenia. This drug is mainly excreted in the form of oxidative metabolites. In the present study, identification of p450 forms involved in the metabolism was carried out using human livers and intestinal microsomes (HLM and HIM). Eadie-Hofstee plots for NE-100 disappearance in HLM were biphasic, thus indicating the involvement of at least two p450 forms. The metabolism of NE-100 was mediated with recombinant CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. A significant correlation was observed between activities of NE-100 metabolism and dextromethorphan O-demethylation (a specific activity for CYP2D6) or testosterone 6beta-hydroxylation (a specific activity for CYP3A4) in HLM. The activity of NE-100 metabolism was inhibited by approximately 80% by an anti-CYP2D6 antibody and only by quinidine among the p450-selective inhibitors at a low substrate concentration (0.1 microM). In contrast, with a high substrate concentration (10 microM), the activity was inhibited by an anti-CYP3A4 antibody and by ketoconazole. On the other hand, in HIM, the Eadie-Hofstee plots for NE-100 disappearance were monophasic, and the metabolism was strongly inhibited by an anti-CYP3A4 antibody and by ketoconazole but not by other inhibitors used. These results strongly suggest that NE-100 has different profiles regarding metabolism between liver and intestine. During absorption, NE-100 is mainly metabolized by CYP3A4 in the intestine and thereafter by CYP2D6 in the liver in the presence of therapeutic doses.  (+info)

Evidence for positive selection on the floral scent gene isoeugenol-O-methyltransferase. (37/262)

Isoeugenol-O-methyltransferase (IEMT) is an enzyme involved in the production of the floral volatile compounds methyl eugenol and methyl isoeugenol in Clarkia breweri (Onagraceae). IEMT likely evolved by gene duplication from caffeic acid-O-methyltransferase followed by amino acid divergence, leading to the acquisition of its novel function. To investigate the selective context under which IEMT evolved, maximum likelihood methods that estimate variable d(N)/d(S) ratios among lineages, among sites, and among a combination of both lineages and sites were utilized. Statistically significant support was obtained for a hypothesis of positive selection driving the evolution of IEMT since its origin. Subsequent Bayesian analyses identified several sites in IEMT that have experienced positive selection. Most of these positions are in the active site of IEMT and have been shown by site-directed mutagenesis to have large effects on substrate specificity. Although the selective agent is unknown, the adaptive evolution of this gene may have resulted in increased effectiveness of pollinator attraction or herbivore repellence.  (+info)

Glucuronidation of 1'-hydroxyestragole (1'-HE) by human UDP-glucuronosyltransferases UGT2B7 and UGT1A9. (38/262)

Estragole (4-allyl-1-methoxybenzene) is a naturally occurring food flavoring agent found in basil, fennel, bay leaves, and other spices. Estragole and its metabolite, 1'-hydroxyestragole (1'-HE), are hepatocarcinogens in rodent models. Recent studies from our laboratory have shown that glucuronidation of 1'-HE is a major detoxification pathway for estragole and 1'-HE, accounting for as much as 30% of urinary metabolites of estragole in rodents. Therefore, this study was designed to investigate the glucuronidation of 1'-HE in human liver microsomes in vitro and identify the specific uridine diphosphate glucuronosyltransferase (UGT) isoforms responsible for 1'-HE glucuronidation. The formation of the glucuronide of 1'-HE (1'-HEG) followed atypical kinetics, and the data best fit to a Hill equation, resulting in apparent kinetic parameters of Km = 1.45 mM, Vmax = 164.5 pmoles/min/mg protein, and n = 1.4. There was a significant intersubject variation in 1'-HE glucuronidation in 27 human liver samples, with a CV of 42%. A screen of cDNA expressed UGT isoforms indicated that UGT2B7 (83.94 +/- 0.188 pmols/min/mg), UGT1A9 (51.36 +/- 0.72 pmoles/min/mg), and UGT2B15 (8.18 +/- 0.037 pmoles/min/mg) were responsible for 1'-HEG formation. Glucuronidation of 1'-HE was not detected in cells expressing UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, and UGT1A10. 1'-HE glucuronidation in 27 individual human liver samples significantly (p < 0.05) correlated with the glucuronidation of other UGT2B7 substrates (morphine and ibuprofen). These results imply that concomitant chronic intake of therapeutic drugs and dietary components that are UGT2B7 and/or UGT1A9 substrates may interfere with estragole metabolism. Our results also have toxicogenetic significance, as UGT2B7 is polymorphic and could potentially result in genetic differences in glucuronidation of 1'-HE and, hence, toxicity of estragole.  (+info)

First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. (39/262)

The sulfonephthalein indicator, phenol red, exhibits an unusually slow rate of oxidation by laccase from Poliporus pinsitus, in spite of the fact that it is a phenol and therefore a natural substrate for this phenoloxidase enzyme. Nevertheless, after prolonged exposure to laccase (24 h) phenol red is oxidized by more than 90%. We found that phenol red, which can be oxidatively converted into a resonance-stabilized phenoxy radical, performs as a mediator in the laccase-catalyzed oxidation of a nonphenolic substrate (4-methoxybenzyl alcohol) and also of a hindered phenol (2,4,6-tri-tert-butylphenol). In particular, phenol red was found to be at least 10 times more efficient than 3-hydroxyanthranilate (a reported natural phenolic mediator of laccase) in the oxidation of 4-methoxybenzyl alcohol. Other phenols, which do not bear structural analogies to phenol red, underwent rapid degradation and did not perform as laccase mediators. On the other hand, several variously substituted sulfonephthaleins, of different pK2 values, mediated the laccase catalysis, the most efficient being dichlorophenol red, which has the lowest pK2 of the series. The mediating efficiency of phenol red and dichlorophenol red was found to be pH dependent, as was their oxidation Ep value (determined by cyclic voltammetry). We argue that the relative abundance of the phenoxy anion, which is easier to oxidize than the protonated phenol, may be one of the factors determining the efficiency of a phenolic mediator, together with its ability to form relatively stable oxidized intermediates that react with the desired substrate before being depleted in undesired routes.  (+info)

Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. (40/262)

A novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-(3)H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the M(r) was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28 degrees C, with a pI of 4.9. The K(m) values for 2,4,6-trichlorophenol and SAM were 135.9 +/- 12.8 and 284.1 +/- 35.1 micro M, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a K(i) of 378.9 +/- 45.4 micro M. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu(2+), Hg(2+), Zn(2+), and Ag(+), and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.  (+info)