DNA conformational dynamics in the presence of catanionic mixtures. (33/2355)

DNA conformational behavior in the presence of non-stoichiometric mixtures of two oppositely charged surfactants, cetyltrimethylammonium bromide and sodium octyl sulfate, was directly visualized in an aqueous solution with the use of a fluorescence microscopy technique. It was found that in the presence of cationic-rich catanionic mixtures, DNA molecules exhibit a conformational transition from elongated coil to compact globule states. Moreover, if the catanionic mixtures form positively charged vesicles, DNA is adsorbed onto the surface of the vesicles in a collapsed globular form. When anionic-rich catanionic mixtures are present in the solution, no change in the DNA conformational behavior was detected. Cryogenic transmission electron microscopy, as well as measurements of translational diffusion coefficients of individual DNA chains, supported our optical microscopy observations.  (+info)

The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. (34/2355)

Growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid results in the induction of the ATP-binding cassette (ABC) transporter Pdr12 in the plasma membrane (P. Piper, Y. Mahe, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. Muhlbauer, P. Coote, and K. Kuchler, EMBO J. 17:4257-4265, 1998). Pdr12 appears to mediate resistance to water-soluble, monocarboxylic acids with chain lengths of from C(1) to C(7). Exposure to acids with aliphatic chain lengths greater than C(7) resulted in no observable sensitivity of Deltapdr12 mutant cells compared to the parent. Parent and Deltapdr12 mutant cells were grown in the presence of sorbic acid and subsequently loaded with fluorescein. Upon addition of an energy source in the form of glucose, parent cells immediately effluxed fluorescein from the cytosol into the surrounding medium. In contrast, under the same conditions, cells of the Deltapdr12 mutant were unable to efflux any of the dye. When both parent and Deltapdr12 mutant cells were grown without sorbic acid and subsequently loaded with fluorescein, upon the addition of glucose no efflux of fluorescein was detected from either strain. Thus, we have shown that Pdr12 catalyzes the energy-dependent extrusion of fluorescein from the cytosol. Lineweaver-Burk analysis revealed that sorbic and benzoic acids competitively inhibited ATP-dependent fluorescein efflux. Thus, these data provide strong evidence that sorbate and benzoate anions compete with fluorescein for a putative monocarboxylate binding site on the Pdr12 transporter.  (+info)

Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. (35/2355)

More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization.  (+info)

High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5'-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. (36/2355)

Class I ribonucleotide reductases (RNRs) are composed of two subunits, R1 and R2. The R2 subunit contains the essential diferric cluster-tyrosyl radical (Y.) cofactor and R1 is the site of the conversion of nucleoside diphosphates to 2'-deoxynucleoside diphosphates. A mutant in the R1 subunit of Escherichia coli RNR, E441Q, was generated in an effort to define the function of E441 in the nucleotide-reduction process. Cytidine 5'-diphosphate was incubated with E441Q RNR, and the reaction was monitored by using stopped-flow UV-vis spectroscopy and high-frequency (140 GHz) time-domain EPR spectroscopy. These studies revealed loss of the Y. and formation of a disulfide radical anion and present experimental mechanistic insight into the reductive half-reaction catalyzed by RNR. These results support the proposal that the protonated E441 is required for reduction of a 3'-ketodeoxynucleotide by a disulfide radical anion. On the minute time scale, a second radical species was also detected by high-frequency EPR. Its g values suggest that this species may be a 4'-ketyl radical and is not on the normal reduction pathway. These experiments demonstrate that high-field time-domain EPR spectroscopy is a powerful new tool for deconvolution of a mixture of radical species.  (+info)

Evidence for a small anion-selective channel in the cell wall of Mycobacterium bovis BCG besides a wide cation-selective pore. (37/2355)

Two channels were observed in extracts of whole Mycobacterium bovis BCG cells using organic solvents and detergents. The channels derived from organic solvent treatment had a single-channel conductance of about 4.0 nS in 1 M KCl in lipid bilayer membranes with properties similar to those of the channels discovered previously in Mycobacterium smegmatis and Mycobacterium chelonae. The channel was in its open configuration only at low transmembrane potentials. At higher voltages it switched to closed states that were almost impermeable for ions. Lipid bilayer experiments in the presence of detergent extracts of whole cells revealed another channel with a single-channel conductance of only 780 pS in 1 M KCl. Our results indicate that the mycolic acid layer of M. bovis BCG contains two channels, one is cation-selective and its permeability properties can be finely controlled by cell wall asymmetry or potentials. The other one is anion-selective, has a rather small single-channel conductance and is voltage-insensitive. The concentration of channel-forming proteins in the cell wall seems to be small, which is in agreement with the low cell wall permeability for hydrophilic solutes.  (+info)

Molten globule versus variety of intermediates: influence of anions on pH-denatured apomyoglobin. (38/2355)

The molten globule state was shown to be the third thermodynamic state of protein molecules in addition to their native and unfolded states. On the other hand, it was reported that optical and hydrodynamic properties of pH-denatured apomyoglobin depend on the nature of anions added to the protein solution. This observation was used to conclude that there are many 'partly folded' intermediates between the native and unfolded states rather than one distinct molten globule state. However, little is known on the structures of pH-denatured apomyoglobin in the presence of different anions. Two tyrosine residues in horse apomyoglobin have been successively modified by the reaction with tetranitromethane. This approach was employed to measure the distances between tryptophans and modified tyrosines in different states of apomyoglobin by the method of direct energy transfer. Experimental data show that the distance between the middle of the A-helix and the beginning of the G-helix and/or the end of the H-helix in 'anion-induced' states are very close to those in the native holo- and apomyoglobins. This suggests that the AGH helical complex, being the most structured part of apomyoglobin in the molten globule state, exists also in pH-denatured apomyoglobin in the presence of different anions. Consequently, all non-native forms of apomyoglobin studied so far share the common important feature of its native structure.  (+info)

Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. (39/2355)

Plantaricin EF and JK are both two-peptide bacteriocins produced by Lactobacillus plantarum C11. The mechanism of plantaricin EF and JK action was studied on L. plantarum 965 cells. Both plantaricins form pores in the membranes of target cells and dissipate the transmembrane electrical potential (Deltapsi) and pH gradient (DeltapH). The plantaricin EF pores efficiently conduct small monovalent cations, but conductivity for anions is low or absent. Plantaricin JK pores show high conductivity for specific anions but low conductivity for cations. These data indicate that L. plantarum C11 produces bacteriocins with complementary ion selectivity, thereby ensuring efficient killing of target bacteria.  (+info)

Fluid secretion by isolated Malpighian tubules of Drosophila melanogaster Meig.: effects of organic anions, quinacrine and a diuretic factor found in the secreted fluid. (40/2355)

Para-aminohippuric acid (PAH, 0.2 and 1 mmol l(-)(1)) had no effect on the basal fluid secretion rate (FSR) of isolated Malpighian tubules of Drosophila melanogaster Meig. and did not affect stimulation of the FSR induced by adenosine 3',5'-monophosphate (cAMP). Phenol Red (phenolsulphonphthalein, PSP; 0.5 and 1 mmol l(-)(1)) slowed the FSR and abolished stimulation of the FSR by cAMP. Diodrast (1 mmol l(-)(1)) slightly, but significantly, reduced the FSR and greatly reduced the stimulation of the FSR normally provoked by cAMP and by the 3',5'-monophosphates of guanosine (cGMP), inosine (cIMP) and uridine (cUMP). However, stimulation of the FSR by the 3', 5'-monophosphate of cytidine (cCMP) was little affected by diodrast. Probenecid (0.2 or 1 mmol l(-)(1)) consistently stimulated the FSR, on average by approximately 25 %, but did not markedly inhibit the subsequent stimulation of the FSR by cAMP, cGMP or cIMP. However, the FSR of tubules stimulated by cGMP was temporarily lowered by probenecid. Quinacrine (0.1 mmol l(-)(1)) slowed basal FSR by an average of approximately 30 %, but subsequent stimulation of the FSR by cAMP was not noticeably affected. Both 0.1 mmol l(-)(1) cAMP and 1 mmol l(-)(1) probenecid stimulated adenylate cyclase activity in extracts of Malpighian tubules, but cIMP, cGMP, cUMP and diodrast were without effect in this regard. Uptake of radioactivity from a solution containing 500 nmol l(-)(1) [(3)H]cAMP and 9.5 micromol l(-)(1) cAMP was reduced by more than 90 % by 1 mmol l(-)(1) PSP, by approximately 40 % by 0.2 mmol l(-)(1) probenecid, by 36 % by 1 mmol l(-)(1) diodrast and by 30 % by 1 mmol l(-)(1) PAH. Neither 0.01 mmol l(-)(1) ouabain nor 0.1 mmol l(-)(1) quinacrine affected the uptake of [(3)H]cAMP by the Malpighian tubules. Fluid secreted by isolated Malpighian tubules of Drosophila melanogaster contains a factor that stimulated the FSR on average by approximately 50 %. The presence in the secreted fluid of cGMP at a concentration of 8.3 micromol l(-)(1) did not explain the stimulatory effect on FSR. These results support the existence of a carrier-mediated uptake of cyclic nucleotides into the Malpighian tubules of Drosophila melanogaster, possibly involving a multispecific transporter.  (+info)