Co-existence of hereditary spherocytosis and a new red cell pyruvate kinase variant: PK mallorca. (25/661)

BACKGROUND AND OBJECTIVE: A partial red blood cell (RBC) pyruvate-kinase (PK-R) deficiency was found in a patient with concomitant hereditary spherocytosis (HS) and chronic hemolytic anemia. Clinical, biological and molecular studies were performed in the patient, his parents and a brother, in order to characterize the specific PK-R gene mutation and the inheritance mechanism of the transmission of both red cell defects in this particular family. DESIGN AND METHODS: Conventional biological studies were used to identify the PK-LR gene mutation responsible for hereditary transmission of PK-R deficiency and HS. The family study was completed with genotypic and RBC membrane protein analyses in the patient and his family. RESULTS: Molecular study of the PK deficiency was performed in all the family members and demonstrated a heterozygous condition for the 1516 G->A (506Val->Ile) mutation at the PK-LR gene in both the patient and his mother. Since this mutation has not been reported previously, it is provisionally named PK "Mallorca". The study of RBC membrane proteins demonstrated the existence of partial band 3 and protein 4.2 deficiencies in the propositus and his father but not in the mother and brother, who were also studied. These results support the dominant mode of inheritance of HS and PK-LR gene in this family. INTERPRETATION AND CONCLUSIONS: HS and PK deficiency are not exceptional in Spain. The co-existence of both RBC defects in the same patient, however, is very rare; only a few cases have been described to date. Our findings suggest that performing an elementary RBC enzyme survey in all patients with HS would help to determine the real frequency of this apparently rare association.  (+info)

Lateral diffusion of membrane proteins in the presence of static and dynamic corrals: suggestions for appropriate observables. (26/661)

We consider the possibility of inferring the nature of cytoskeletal interaction with transmembrane proteins via optical experiments such as single-particle tracking (SPT) and near-field scanning optical microscopy (NSOM). In particular, we demonstrate that it may be possible to differentiate between static and dynamic barriers to diffusion by examining the time-dependent variance and higher moments of protein population inside cytoskeletal "corrals." Simulations modeling Band 3 diffusion on the surface of erythrocytes provide a concrete demonstration that these statistical tools might prove useful in the study of biological systems.  (+info)

Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca(2+)-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Onchorhynchus mykiss) and human erythrocytes. (27/661)

Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  (+info)

Enzymatic removal of oxidized protein aggregates from erythrocyte membranes. (28/661)

Erythrocytes oxidized or aged in the circulation undergo membrane protein aggregation and anti-band 3 autoantibody binding to the cell surface. When human erythrocytes were mildly oxidized in vitro with 0.1 mM Fe(III) at 37 degrees C for 3 h, the aggregation of nonionic detergent C(12)E(8)-insoluble membrane protein and the binding of anti-band 3 IgG to the cell surface were increased. Incubation of membranes isolated from the oxidized cells increased the amount of protein aggregates by 5-fold after 6 h, while incubation for a further 12 h sharply decreased the amount of aggregates. In the presence of diisopropyl fluorophosphate (DFP), however, the increased amount of aggregates was maintained in the subsequent incubation. Western blot analysis of the aggregates using rabbit anti-band 3 showed that band 3 protein aggregates increased in the initial stage of incubation and decreased upon subsequent incubation, whereas the increased band 3 protein aggregates did not subsequently decrease when membranes were incubated in the presence of DFP. Incubation of the oxidized cells at 37 degrees C for 18 h caused reduction of the membrane protein aggregates and the (125)I-anti-band 3 IgG binding to the cell surface, while incubation in the presence of DFP did not cause these reductions. The results suggest that the oxidation-induced cell membrane protein aggregates were probably removed by 80-kDa serine protease, namely, oxidized protein hydrolase (OPH), in the oxidized cell membranes [Fujino et al. (1998) Biochim. Biophys. Acta 1374, 47-54; (1998) J. Biochem. 124, 1077-1085; (2000) Biochim. Biophys. Acta 1478, 102-112], and as a result the increased anti-band 3 binding to the cell surface was reduced.  (+info)

Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. (29/661)

Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl sites in membrane proteins as a key event in erythrocyte spleen conditioning and hemocatheresis is proposed.  (+info)

Membrane integration of the second transmembrane segment of band 3 requires a closely apposed preceding signal-anchor sequence. (30/661)

We have investigated the topogenic rules of multispanning membrane proteins using erythrocyte band 3. Here, the fine structural requirements for the correct disposition of its second transmembrane segment (TM2) were assessed. We made fusion proteins where TM1 and the loop sequence preceding TM2 were changed and fused to prolactin. They were expressed in a cell-free system supplemented with rough microsomal membrane, and their topologies on the membrane were assessed by protease sensitivity and N-glycosylation. TM1 was demonstrated to be a signal-anchor sequence that mediates translocation of the downstream portion, and thus TM2 should be responsible to halt the translocation to acquire TM topology. When the loop between TM1 and TM2 was elongated, however, TM2 was readily translocated through the membrane and not integrated. For the membrane integration of TM2, TM2 must be in close proximity to TM1. The TM1 can be replaced with another signal-anchor sequence with a long hydrophobic segment but not with a signal sequence with shorter hydrophobic stretch. The length of the hydrophobic segment affected final topology of TM2. We concluded that the two TM segments work synergistically within the translocon to acquire the correct topology and that the length of the preceding signal sequence is critical for stable transmembrane assembly of TM2. We propose that direct interaction among the TM segments is one of the critical factors for the transmembrane topogenesis of multispanning membrane proteins.  (+info)

Abnormalities of erythrocyte membrane proteins in Korean patients with hereditary spherocytosis. (31/661)

Hereditary spherocytosis (HS) is a common inherited erythrocyte membrane disorder characterized by chronic hemolytic anemia. Clinical manifestations and biochemical abnormalities of HS are heterogeneous. In this study, we investigated erythrocyte membrane protein defects in 27 Korean HS cases. Utilizing both the Fairbanks system and the Laemmli system, sodium dodecyl sulfate polyacrylamide gel electrophoresis of erythrocyte membrane proteins was performed. Proteins were stained with Coomassie brilliant blue and gels were scanned using a densitometer. We detected spectrin deficiency in 7.4% of cases (2/27), ankyrin deficiency in 29.6% (8/27), combined spectrin and ankyrin deficiency in 3.7% (1/27), band 3 deficiency in 11.1% (3/27) and protein 4.2 deficiency in 14.8% (4/27). Membrane protein deficiencies were not observed in nine cases (33.3%, 9/27). Members of two of seven families tested showed the same protein defects as the proband. Ankyrin deficiency alone and combined with spectrin deficiency accounted for 33.3% of cases (9/27), and they were the most common biochemical defects in Korean HS cases. Protein 4.2 deficiency caused HS more frequently in Koreans than in Caucasians.  (+info)

Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. (32/661)

We describe three mutations of the red-cell anion exchangerband 3 (AE1, SLC4A1) gene associated with distalrenal tubular acidosis (dRTA) in families from Malaysia and Papua NewGuinea: Gly(701)-->Asp (G701D), Ala(858)-->Asp(A858D) and deletion of Val(850) (DeltaV850). The mutationsA858D and DeltaV850 are novel; all three mutations seem to berestricted to South-East Asian populations. South-East Asianovalocytosis (SAO), resulting from the band 3 deletion of residues400-408, occurred in many of the families but did not itselfresult in dRTA. Compound heterozygotes of each of the dRTA mutationswith SAO all had dRTA, evidence of haemolytic anaemia and abnormal red-cell properties. The A858D mutation showed dominant inheritance and therecessive DeltaV850 and G701D mutations showed a pseudo-dominantphenotype when the transport-inactive SAO allele was also present. Red-cell and Xenopus oocyte expression studies showed that theDeltaV850 and A858D mutant proteins have greatly decreased aniontransport when present as compound heterozygotes (DeltaV850/A858D,DeltaV850/SAO or A858D/SAO). Red cells with A858D/SAO had only 3% ofthe SO(4)(2-) efflux of normal cells, thelowest anion transport activity so far reported for human red cells. The results suggest dRTA might arise by a different mechanism for eachmutation. We confirm that the G701D mutant protein has an absoluterequirement for glycophorin A for movement to the cell surface. Wesuggest that the dominant A858D mutant protein is possibly mis-targetedto an inappropriate plasma membrane domain in the renal tubular cell,and that the recessive DeltaV850 mutation might give dRTA because ofits decreased anion transport activity.  (+info)