Uncoupling protein-1: involvement in a novel pathway for beta-adrenergic, cAMP-mediated intestinal relaxation. (33/277)

The pathway for adrenergic relaxation of smooth muscle is not fully understood. As mitochondrial uncoupling protein-1 (UCP1) expression has been reported in cells within the longitudinal smooth muscle layer of organs exhibiting peristalsis, we examined whether the absence of UCP1 affects adrenergic responsiveness. Intestinal (ileal) segments were obtained from UCP1-ablated mice and from wild-type mice (C57Bl/6, 129/SvPas, and outbred NMRI). In UCP1-containing mice, isoprenaline totally inhibited contractions induced by electrical field stimulation, but in intestine from UCP1-ablated mice, a significant residual contraction remained even at a high isoprenaline concentration; the segments were threefold less sensitive to isoprenaline. Also, when contraction was induced by carbachol, there was a residual isoprenaline-insensitive contraction. Similar results were obtained with the beta(3)-selective agonist CL-316,243 and with the adenylyl cyclase stimulator forskolin. Thus the UCP1 reported to be expressed in the longitudinal muscle layer of the mouse intestine is apparently functional, and UCP1, presumably through uncoupling, may be involved in a novel pathway leading from increased cAMP levels to relaxation in organs exhibiting peristalsis.  (+info)

Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster. (34/277)

Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.  (+info)

Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. (35/277)

Successful cryopreservation requires cells to tolerate volume excursions experienced during permeating cryoprotectant equilibration and during cooling and warming. However, prior studies have demonstrated that mouse spermatozoa are extremely sensitive to osmotically induced volume changes. A series of three experiments were conducted 1) to test the efficacy of two commonly used extender media components, egg yolk (EY) and skim milk (SM), in broadening the osmotic tolerance limits (OTL) of ICR and B6C3F1 murine spermatozoa; 2) to determine if the extender components affected sperm plasma membrane permeability coefficients for water and cryoprotective agent (CPA) characteristics; and 3) to test the effects of permeating and nonpermeating CPA on mouse sperm morphology. In experiment 1, sperm samples were added to 150, 225, 300, 450, or 600 mOsm NaCl, EY, SM, sucrose, or choline chloride at 22 degrees C and then returned to isosmotic conditions. In experiment 2, epididymal sperm were preequilibrated in 1 M glycerol (Gly) or 2 M ethylene glycol (EG) prepared in SM extender, abruptly exposed to isosmotic conditions at 22, 15, or 2 degrees C, and the corresponding volume excursions were measured and analyzed. In experiment 3, the effects of permeating CPA (0.3 M EG or dimethyl sulfoxide) or nonpermeating CPA (12% sucrose or 18% raffinose) on sperm morphology (i.e., principle midpiece folding and putative membrane fusion) were evaluated. Experiment 1 showed that spermatozoa from ICR and B6C3F1 mice have effectively broader OTL when exposed to EY or SM extenders. The results of experiment 2 indicated that, for ICR sperm, the activation energy (E(a)) for the hydraulic conductivity (L(p)) was unchanged in SM extender. However, for B6C3F1 sperm, there were significant differences in E(a) of L(p) in the presence of Gly and EG. The result of experiment 3 indicated that permeating CPAs damage sperm membrane integrity, causing a high frequency of head-to-tail or tail-to-tail membrane fusion, whereas this occurrence in the presence of nonpermeating CPA was less than 3%. Finally, the results of experiments 1 and 2 were combined in a mathematical model to predict Gly and EG addition and removal in the presence of SM extender, which would prevent mouse sperm membrane damage. These predictions indicated that, for ICR sperm, both Gly and EG may be added and removed in a single step. However, for B6C3F1 spermatozoa, Gly required a two-step addition while EG only required a single step. For removal from B6C3F1 sperm, Gly required a three-step removal process while EG required a two-step removal.  (+info)

Dynamics of success and failure in phage and antibiotic therapy in experimental infections. (36/277)

BACKGROUND: In 1982 Smith and Huggins showed that bacteriophages could be at least as effective as antibiotics in preventing mortality from experimental infections with a capsulated E. coli (K1) in mice. Phages that required the K1 capsule for infection were more effective than phages that did not require this capsule, but the efficacies of phages and antibiotics in preventing mortality both declined with time between infection and treatment, becoming virtually ineffective within 16 hours. RESULTS: We develop quantitative microbiological procedures that (1) explore the in vivo processes responsible for the efficacy of phage and antibiotic treatment protocols in experimental infections (the Resistance Competition Assay, or RCA), and (2) survey the therapeutic potential of phages in vitro (the Phage Replication Assay or PRA). We illustrate the application and utility of these methods in a repetition of Smith and Huggins' experiments, using the E. coli K1 mouse thigh infection model, and applying treatments of phages or streptomycin. CONCLUSIONS: 1) The Smith and Huggins phage and antibiotic therapy results are quantitatively and qualitatively robust. (2) Our RCA values reflect the microbiological efficacies of the different phages and of streptomycin in preventing mortality, and reflect the decline in their efficacy with a delay in treatment. These results show specifically that bacteria become refractory to treatment over the term of infection. (3) The K1-specific and non-specific phages had similar replication rates on bacteria grown in broth (based on the PRA), but the K1-specific phage had markedly greater replication rates in mouse serum.  (+info)

Estimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci. (37/277)

The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations (DGM). Our ability to accurately estimate various parameters of DGM has profound significance in population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and hence is biased under variable fitness effects of DGM. Here, we develop a statistical method to estimate DGM parameters by considering variable mutation effects across loci. Under variable mutation effects, the mean fitness and genetic variance for fitness of parental and progeny generations across selfing/outcrossing in outcrossing/selfing populations and the covariance between mean fitness of parents and that of their progeny are functions of DGM parameters: the genomic mutation rate U, average homozygous effect s, average dominance coefficient h, and covariance of selection and dominance coefficients cov(h, s). The DGM parameters can be estimated by the algorithms we developed herein, which may yield improved estimation of DGM parameters over the Deng-Lynch method as demonstrated by our simulation studies. Importantly, this method is the first one to characterize cov(h, s) for DGM.  (+info)

The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. (38/277)

The yeast Sir2p protein has an essential role in maintaining telomeric and mating type genes in their transcriptionally inactive state. Mammalian cells have a very large proportion of their genome inactive and also contain seven genes that have regions of homology with the yeast sir2 gene. One of these mammalian genes, sir2alpha, is the presumptive mammalian homologue of the yeast sir2 gene. We set out to determine if sir2alpha plays a role in mammalian gene silencing by creating a strain of mice carrying a null allele of sir2alpha. Animals carrying two null alleles of sir2alpha were smaller than normal at birth, and most died during the early postnatal period. In an outbred background, the sir2alpha null animals often survived to adulthood, but both sexes were sterile. We found no evidence for failure of gene silencing in sir2alpha null animals, suggesting that either SIR2alpha has a different role in mammals than it does in Saccharomyces cerevisiae or that its role in gene silencing in confined to a small subset of mammalian genes. The phenotype of the sir2alpha null animals suggests that the SIR2alpha protein is essential for normal embryogenesis and for normal reproduction in both sexes.  (+info)

Evaluation of protection against Chlamydophila abortus challenge after DNA immunization with the major outer-membrane protein-encoding gene in pregnant and non-pregnant mice. (39/277)

The protective effect of DNA vaccination with the gene encoding the major outer-membrane protein (MOMP) of Chlamydophila abortus has been studied in non-pregnant and pregnant mouse models after chlamydial challenge. OF1 outbred mice were vaccinated intramuscularly three times every 3 weeks, mated and challenged with C. abortus 2 weeks after the last injection of DNA. In non-pregnant mice, the MOMP DNA vaccine elicited a specific humoral response with predominantly IgG2a antibodies, suggesting a Th1-type immune response. The induced antibodies showed no in vitro neutralizing effect on C. abortus infectivity. Moreover, immunization with the momp gene showed no reduction in the mean splenic bacterial counts of non-pregnant or pregnant mice or in the mean placental bacterial counts of pregnant mice after the C. abortus challenge. Nevertheless, the MOMP DNA immunization induced a non-specific and partial protection in fetuses against challenge.  (+info)

Effective protective immunity to Yersinia pestis infection conferred by DNA vaccine coding for derivatives of the F1 capsular antigen. (40/277)

Three plasmids expressing derivatives of the Yersinia pestis capsular F1 antigen were evaluated for their potential as DNA vaccines. These included plasmids expressing the full-length F1, F1 devoid of its putative signal peptide (deF1), and F1 fused to the signal-bearing E3 polypeptide of Semliki Forest virus (E3/F1). Expression of these derivatives in transfected HEK293 cells revealed that deF1 is expressed in the cytosol, E3/F1 is targeted to the secretory cisternae, and the nonmodified F1 is rapidly eliminated from the cell. Intramuscular vaccination of mice with these plasmids revealed that the vector expressing deF1 was the most effective in eliciting anti-F1 antibodies. This response was not limited to specific mouse strains or to the mode of DNA administration, though gene gun-mediated vaccination was by far more effective than intramuscular needle injection. Vaccination of mice with deF1 DNA conferred protection against subcutaneous infection with the virulent Y. pestis Kimberley53 strain, even at challenge amounts as high as 4,000 50% lethal doses. Antibodies appear to play a major role in mediating this protection, as demonstrated by passive transfer of anti-deF1 DNA antiserum. Taken together, these observations indicate that a tailored genetic vaccine based on a bacterial protein can be used to confer protection against plague in mice without resorting to regimens involving the use of purified proteins.  (+info)