Effects of BAY 10-6734 (Embusartan), a new angiotensin II type I receptor antagonist, on vascular smooth muscle cell growth. (33/7785)

Angiotensin II (AII), an important hypertrophic factor in the cardiovascular system, exerts most of its known effects in vivo through the AII receptor type 1 (AT1) subclass of AII receptors. These receptors are also responsible for the growth-related effects of AII in cultured vascular smooth muscle cells (VSMCs). We presently investigated the effects of BAY 10-6734 (Embusartan), a new orally active AT1 antagonist, on VSMC growth and proliferation of cultured VSMCs isolated from the aortae of Wistar Kyoto rats and spontaneously hypertensive rats. BAY 10-6734 and losartan (considered as AT1 receptor antagonist of reference), as well as their respective active metabolites, were studied for their inhibition of: 1) [125I]AII binding to its receptors, 2) AII-induced DNA and protein synthesis (by measuring the incorporation of 5-bromo-2'-deoxyuridine and [3H]L-leucine, respectively), and 3) AII-induced variations in intracellular Ca2+ concentration, using cells labeled with Fura-2. All of the tested compounds inhibited the aforementioned parameters in a concentration-dependent manner. Half-maximal inhibitory concentration values indicated that BAY 10-6734 was significantly more potent than losartan and that spontaneously hypertensive rat-derived VSMCs were more sensitive than Wistar Kyoto rat-derived ones. Neither BAY 10-6734 nor losartan affected the intracellular Ca2+ concentration of unstimulated VSMCs but both compounds inhibited both AII-induced Ca2+ mobilization from internal stores and Ca2+ influx. Neither compound affected arginine-vasopressin-, basic fibroblast growth factor-, or serum-induced DNA and protein synthesis. BAY 10-6734 appears therefore as a potent and specific new inhibitor of AII-induced growth-related events in VSMCs.  (+info)

Interaction between neutral endopeptidase and angiotensin converting enzyme inhibition in rats with myocardial infarction: effects on cardiac hypertrophy and angiotensin and bradykinin peptide levels. (34/7785)

Combined inhibition of neutral endopeptidase 24.11 (NEP) and angiotensin converting enzyme (ACE) is a candidate therapy for hypertension and cardiac failure. Given that NEP and ACE metabolize angiotensin (Ang) and bradykinin (BK) peptides, we investigated the effects of NEP inhibition and combined NEP and ACE inhibition on Ang and BK levels in rats with myocardial infarction. We administered the NEP inhibitor ecadotril (0, 0.1, 1, 10, and 100 mg/kg/day), either alone or together with the ACE inhibitor perindopril (0.2 mg/kg/day) by 12-hourly gavage from day 2 to 28 after infarction. Ecadotril increased urine cyclic GMP and BK-(1-9) excretion. Perindopril potentiated the effect of ecadotril on urine cyclic GMP excretion. Neither perindopril nor ecadotril reduced cardiac hypertrophy when administered separately, whereas the combination of perindopril and 10 or 100 mg/kg/day ecadotril reduced heart weight/body weight ratio by 10%. Administration of ecadotril to perindopril-treated rats decreased plasma Ang-(1-7) levels, increased cardiac BK-(1-9) levels, and increased Ang II levels in plasma, kidney, aorta, and lung. These data demonstrate interactions between the effects of NEP and ACE inhibition on remodeling of the infarcted heart and on Ang and BK peptide levels. Whereas increased cardiac BK-(1-9) levels may contribute to the reduction of cardiac hypertrophy, the reduction in plasma Ang-(1-7) levels and increase in Ang II levels in plasma and tissues may compromise the therapeutic effects of combined NEP/ACE inhibition.  (+info)

Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. (35/7785)

Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.  (+info)

Serial changes in sarcoplasmic reticulum gene expression in volume-overloaded cardiac hypertrophy in the rat: effect of an angiotensin II receptor antagonist. (36/7785)

This study was designed to clarify whether gene expression in the cardiac sarcoplasmic reticulum [sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban, ryanodine receptor and calsequestrin] changes in accordance with left ventricular functional alterations in the volume-overloaded heart. Further, the effect of the angiotensin II type 1 receptor antagonist, TCV-116, on the expression of these genes was also evaluated. Left ventricular fractional shortening was significantly increased at 7 days, had returned to control levels at 21 days, and had significantly decreased at 35 days after the shunt operation, compared with sham-operated rats. The level of SERCA mRNA was significantly decreased at both 21 days and 35 days after the shunt operation. The levels of ryanodine receptor and phospholamban mRNAs were significantly decreased at 35 days in shunt-operated rats. The decrease in the SERCA mRNA level preceded the development of cardiac dysfunction. The levels of SERCA and ryanodine receptor mRNAs were correlated positively with left ventricular fractional shortening (r=0.73, P<0.0001 and r=0.61, P<0.01 respectively). Attenuation of the decrease in left ventricular fractional shortening occurred on treatment with TCV-116. After the treatment with TCV-116, the levels of SERCA and phospholamban mRNAs were restored to the respective values in sham-operated rats. Ryanodine receptor mRNA levels remained unchanged after treatment with TCV-116. These results indicate that the down-regulation of SERCA and ryanodine receptor mRNA levels may be related to cardiac dysfunction in the volume-overloaded heart. In addition, treatment with an angiotensin II receptor antagonist may restore the altered sarcoplasmic reticulum mRNA levels to control levels, and this may result in attenuation of the functional impairment in the volume-overloaded heart.  (+info)

Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. (37/7785)

Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.  (+info)

Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat gastric mucosal blood flow. (38/7785)

BACKGROUND: Angiotensin II (ATII) has been suggested to contribute to shock-induced dysfunction of the gastric circulation. AIM: To substantiate this conjecture, the effects on gastric mucosal haemodynamics and the hyperaemic response to acid back-diffusion of ATII and the angiotensin AT1 receptor antagonist, telmisartan, were examined in normal rats and in animals subjected to haemorrhage. METHODS: Gastric mucosal blood flow in phenobarbital-anaesthetized rats was recorded with the hydrogen clearance technique, and acid back-diffusion was induced by perfusing the stomach with ethanol (25%) in HCl (0.05 M). RESULTS: Intravenous infusion of ATII (0.3-10 nmol/min/kg) led to dose-dependent hypertension and a reduction of blood flow and vascular conductance in the gastric mucosa. The gastric hyperaemia caused by acid back-diffusion was attenuated by ATII (1 nmol/min/kg). These effects of ATII were antagonized by intravenous injection of telmisartan (1-10 mg/kg) which per se caused hypotension and dilated the gastric mucosal vasculature, but did not modify the gastric mucosal hyperaemia evoked by acid back-diffusion. Hypotension induced by haemorrhage (1.3 mL blood per 100 g body weight) failed to alter the hyperaemia due to acid back-diffusion, but caused gastric mucosal vasoconstriction, an effect that was left unaffected by telmisartan. CONCLUSIONS: ATII constricts the rat gastric microvasculature via an action involving AT1 receptors. The effects of telmisartan indicate that endogenous ATII contributes to the homeostatic regulation of gastric vascular tone but does not compromise the ability of the gastric microvasculature to react to influxing acid. These results negate the concept that ATII contributes to the gastric vascular perturbances in haemorrhagic shock.  (+info)

Phosphorylation-mediated activation and translocation of the cyclic AMP-specific phosphodiesterase PDE4D3 by cyclic AMP-dependent protein kinase and mitogen-activated protein kinases. A potential mechanism allowing for the coordinated regulation of PDE4D activity and targeting. (39/7785)

In this study, we describe a novel mechanism by which a protein kinase C (PKC)-mediated activation of the Raf-extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade regulates the activity and membrane targeting of members of the cyclic AMP-specific phosphodiesterase D family (PDE4D). Using a combination of pharmacological and biochemical approaches, we show that increases in intracellular cAMP cause a protein kinase A-mediated phosphorylation and activation of the two PDE4D variants expressed in vascular smooth muscle cells, namely PDE4D3 and PDE4D5. In addition, we show that stimulation of PKC via the associated activation of the Raf-MEK-ERK cascade results in the phosphorylation and activation of PDE4D3 in these cells. Furthermore, our studies demonstrate that simultaneous activation of both the protein kinase A and PKC-Raf-MEK-ERK pathways allows for a coordinated activation of PDE4D3 and for the translocation of the particulate PDE4D3 to the cytosolic fraction of these cells. These data are presented and discussed in the context of the activation of the Raf-MEK-ERK cascade acting to modulate the activation and subcellular targeting of PDE4D gene products mediated by cAMP.  (+info)

Nitric oxide and C-type atrial natriuretic peptide stimulate primary aortic smooth muscle cell migration via a cGMP-dependent mechanism: relationship to microfilament dissociation and altered cell morphology. (40/7785)

Migration of aortic smooth muscle cells is thought to be of essential importance in vascular restenosis, remodeling, and angiogenesis. Recent studies have shown that NO donors inhibit the migration of subcultured aortic smooth muscle cells. However, there is evidence that NO elicits opposite effects on cell proliferation in primary versus subcultured cells, indicating fundamental differences among different models of aortic smooth muscle cell cultures. The purpose of the current study was to investigate the effect of NO donors on migration of primary cultures of rat aortic smooth muscle cells and to compare and contrast their response with those in subcultured cells. A second purpose was to investigate some of the underlying mechanisms associated with NO-induced effects on cell migration. We report that 2 NO donors, S-nitroso-N-acetylpenicillamine (SNAP) and 2, 2-(hydroxynitrosohydrazino)bis-ethanamine, stimulated the migration of primary cells in a wounded-culture model as well as in a transwell migration model. The effect of NO donors was mimicked by 2 cGMP analogues and C-type natriuretic peptide and blocked by a specific inhibitor of guanyl cyclase, 1H-(1,2,4)oxadiazolo[4,3, -a]quinoxalin-1-one, indicating the involvement of cGMP as second messenger. Moreover, neither NO donors nor cGMP analogues altered migration of primary cultures stimulated by either FBS or angiotensin II. In contrast to its effect in primary cultures, SNAP did not alter basal or stimulated migration of subcultured cells, except at a relatively high concentration of 1 mmol/L, at which migration was inhibited. The migration-stimulatory effect of NO donors and cGMP was associated with altered cell morphology and dissociation of actin filaments, consistent with recent studies indicating that cell morphology and cytoskeletal organization influence cell migration. The results suggest the possible involvement of NO-induced cell migration in vascular injury or remodeling, representing conditions in which vascular NO levels would be expected to be elevated.  (+info)