1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. (25/1498)

Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R. H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783-791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence.  (+info)

Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. (26/1498)

A group I intron has recently been shown to have invaded mitochondrial cox1 genes by horizontal transfer many times during the broad course of angiosperm evolution. To investigate the frequency of acquisition of this intron within a more closely related group of plants, we determined its distribution and inferred its evolutionary history among 14 genera of the monocot family Araceae. Southern blot hybridizations showed that 6 of the 14 genera contain this intron in their cox1 genes. Nucleotide sequencing showed that these six introns are highly similar in sequence (97.7%-99.4% identity) and identical in length (966 nt). Phylogenetic evidence from parsimony reconstructions of intron distribution and phylogenetic analyses of intron sequences is consistent with a largely vertical history of intron transmission in the family; the simplest scenarios posit but one intron gain and two losses. Despite this, however, striking differences in lengths of exonic co-conversion tracts, coupled with the absence of co-conversion in intron-lacking taxa, indicate that the six intron-containing Araceae probably acquired their introns by at least three and quite possibly five separate horizontal transfers. The highly similar nature of these independently acquired introns implies a closely related set of donor organisms.  (+info)

Suppressive effect of Chinese medicinal herb, Acanthopanax gracilistylus, extract on human lymphocytes in vitro. (27/1498)

We studied the effect of a Chinese medicinal herb, Acanthopanax gracilistylus, extract (AGE), on human lymphocytes in vitro. AGE markedly suppressed the proliferative responses of human peripheral blood lymphocytes stimulated with mitogens concanavalin A (Con A) and Staphylococcus aureus Cowan I (SAC). Both T cell and B cell activities-production of interferon-gamma and immunoglobulin-were suppressed by AGE. The mechanism of AGE-induced suppression of lymphocytes is to arrest the cell cycle at the G0/G1 stage without a direct cytotoxic effect. AGE also suppressed the alloantigen-specific cytotoxic T lymphocyte response. However, natural killer cell activity was less sensitive to the suppressive activity of AGE. In contrast, AGE markedly enhanced monocyte function to produce cytokines. These activities of AGE were associated with a 60-kD protein which was sensitive to treatment with pronase E, but not with NaIO4. These results suggest that AGE has an immunomodulating activity on human lymphocytes and its properties could be clinically applied in the treatment of several diseases such as autoimmune and allergic diseases.  (+info)

3-Geranyl-4-hydroxy-5-(3'-methyl-2'-butenyl)benzoic acid as an anti-inflammatory compound from Myrsine seguinii. (28/1498)

Bioassay-guided isolation of anti-inflammatory compounds from the methanol extract of Myrsine seguinii yielded an anti-inflammatory compound (1). The structure of compound 1 was elucidated to be 3-geranyl-4-hydroxy-5-(3'-methyl-2'-butenyl)benzoic acid on the basis of its spectroscopic data. Compound 1 strongly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 micrograms (inhibitory effect (IE): 65%). The acetate and the methyl ether of 1 showed moderate activity at a 500-microgram application, with IE 38% and 27%, respectively. However, the methyl ester and the dimethyl derivative of 1 did not show activity at the same dose. The related compounds of 1, o-, m- and p-hydroxybenzoic acids also did not exhibit notable activity. These results indicate that the carboxylic acid and lipophilic terpene moieties of 1 were significant structural features for anti-inflammatory activity.  (+info)

The root of angiosperm phylogeny inferred from duplicate phytochrome genes. (29/1498)

An analysis of duplicate phytochrome genes (PHYA and PHYC) is used to root the angiosperms, thereby avoiding the inclusion of highly diverged outgroup sequences. The results unambiguously place the root near Amborella (one species, New Caledonia) and resolve water lilies (Nymphaeales, approximately 70 species, cosmopolitan), followed by Austrobaileya (one species, Australia), as early branches. These findings bear directly on the interpretation of morphological evolution and diversification within angiosperms.  (+info)

Mechanical behaviour of plant tissues: composite materials or structures? (30/1498)

The mechanical characteristics of the strengthening tissue of young axes of Aristolochia macrophylla were studied in successive loading-unloading cycles in tension. Elastic, viscoelastic and plastic deformations could be distinguished. After the first cycle, the material was in a state different from its original state, to which it returned only partially and/or slowly. Internal 'microstructural' prestresses are considered as an explanation for the mechanical behaviour seen in Aristolochia macrophylla and several other plants.  (+info)

Lectinochemical characterization of a GalNAc and multi-Galbeta1-->4GlcNAc reactive lectin from Wistaria sinensis seeds. (31/1498)

An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  (+info)

Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme. (32/1498)

A unique feature of fatty acid synthase (FAS) type II of higher plants and bacteria is 3-oxoacyl-[acyl-carrier-protein (ACP)] synthase III (KAS III), which catalyses the committing condensing reaction. Working with KAS IIIs from Cuphea seeds we obtained kinetic evidence that KAS III catalysis follows a Ping-Pong mechanism and that these enzymes have substrate-binding sites for acetyl-CoA and malonyl-ACP. It was the aim of the present study to identify these binding sites and to elucidate the catalytic mechanism of recombinant Cuphea wrightii KAS III, which we expressed in Escherichia coli. We engineered mutants, which allowed us to dissect the condensing reaction into three stages, i.e. formation of acyl-enzyme, decarboxylation of malonyl-ACP, and final Claisen condensation. Incubation of recombinant enzyme with [1-(14)C]acetyl-CoA-labelled Cys(111), and the replacement of this residue by Ala and Ser resulted in loss of overall condensing activity. The Cys(111)Ser mutant, however, still was able to bind acetyl-CoA and to catalyse subsequent binding and decarboxylation of malonyl-ACP to acetyl-ACP. We replaced His(261) with Ala and Arg and found that the former lost activity, whereas the latter retained overall condensing activity, which indicated a general-base action of His(261). Double mutants Cys(111)Ser/His(261)Ala and Cys(111)Ser/His(261)Arg were not able to catalyse overall condensation, but the double mutant containing Arg induced decarboxylation of [2-(14)C]malonyl-ACP, a reaction indicating the role of His(261) in general-acid catalysis. Finally, alanine scanning revealed the involvement of Arg(150) and Arg(306) in KAS III catalysis. The results offer for the first time a detailed mechanism for a condensing reaction catalysed by a FAS type II condensing enzyme.  (+info)