Cloning of cDNA for a novel fibrinogen/angiopoietin-related protein, FARP. (9/298)

Using a low abundant gene screening strategy in the human dermal papilla cell cDNA library, we isolated a novel cDNA, which was 1,872 bp of nucleotides in length and contained an open reading frame encoding 405 amino acids. We designated it 'fibrinogen/angiopoietin-related protein' (FARP) as it contained the characteristic coiled-coil domain and fibrinogen-like domain in the NH2- and COOH-terminal, which are conserved in angiopoietins. FARP has a highly hydrophobic region at the N-terminus that is typical of a secretory signal sequence. Recently, a very similar gene, HFARP, was cloned and they have a difference of only 18 amino acids in N-terminus. While HFARP was expressed only in the liver, northern blot analysis showed that FARP mRNA is abundantly expressed in the liver, placenta, prostate, and ovary in human adult tissues. It was also expressed in the fetal liver and lung carcinoma cell line. Further study will be needed to clarify the function of the FARP gene.  (+info)

Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. (10/298)

Recent studies have shown that angiopoietins (Angs) and their receptor, Tie2, play a role in vascular integrity and neovascularization. The renin-angiotensin system has been hypothesized to contribute to the development of diabetic retinopathy. In this study, we investigated the effect of angiotensin II (AII) on Ang1 and Ang2 expression in cultured bovine retinal endothelial cells (BRECs). AII stimulated Ang2 but not Ang1 mRNA expression in a dose- and time-dependent manner. This response was inhibited completely by angiotensin type 1 receptor (AT1) antagonist. AII increased the transcription of Ang2 mRNA, but did not change the half-life. Protein kinase C (PKC) inhibitor completely inhibited AII-induced Ang2 expression, and the mitogen-activated protein kinase (MAPK) inhibitor also inhibited it by 69.4+/-15.6%. In addition, we confirmed the upregulation of Ang2 in an AII-induced in vivo rat corneal neovascularization model. These data suggest that AII stimulates Ang2 expression through AT1 receptor-mediated PKC and MAPK pathways in BREC, and AII may play a novel role in retinal neovascularization.  (+info)

Angiopoietin-1 is inversely related to thymidine phosphorylase expression in human breast cancer, indicating a role in vascular remodeling. (11/298)

PURPOSE: Angiogenesis is essential for tumor growth and metastasis. It is a complex, dynamic process that is coordinated by several classes of angiogenic factors. One candidate family is the Tie2 tyrosine kinase, whose expression is restricted largely to endothelial cells. Tie2 has three known ligands, angiopoietin (Ang)-1, Ang-2, and Ang-4, that have different functional effects but play a requisite role in embryonic vessel remodeling. Because there are only limited data on the Tie2 pathway in human breast cancer, and our previous data have suggested that breast tumors establish a blood supply by vascular remodeling, we have investigated the expression of Ang-1, Ang-2, Ang-4, and Tie2 in a series of normal and neoplastic human breast tissues. EXPERIMENTAL DESIGN: We examined mRNA expression by reverse transcription-PCR in 6 normal and 52 malignant breast tissues and correlated expression with clinicopathological and angiogenic variables. We also examined the effect of physiological levels of estrogen on Ang expression. RESULTS: Ang-1, Ang-2, Ang-4, and Tie2 were detected in 19%, 52%, 35%, and 65%, respectively, of tumor samples. There was a significant reduction in expression of tumor Ang-1 (P = 0.04), Ang-2 (P = 0.01), Ang-4 (P = 0.004), and Tie2 (P = 0.02) compared with that in normal breast tissues. There was a significant relationship in tumors between all Angs and between each ligand and Tie2. In a multivariate analysis, there were significant positive correlations between Ang-4 and estrogen receptor (P = 0.016) and a significant inverse correlation between Ang-1 and thymidine phosphorylase expression (P = 0.01). No significant associations were observed between the other members of the Ang/Tie2 gene family and patient age, tumor size, lymph node status, tumor grade, vascular invasion, tumor vascularity, vascular maturation, thymidine phosphorylase, or vascular endothelial growth factor A expression (P > 0.05 for all). The potential regulation of Ang-4 by estrogen was further investigated in vitro. Addition of physiological concentrations of 17beta-estradiol (1 nM) to hormone-free media caused no significant change in Ang-4 mRNA abundance (P = 0.75) in the estrogen receptor-positive cell line MCF-7 after either 2 or 18 h, despite demonstrating induction for the estrogen response gene pS2. CONCLUSIONS: These findings suggest that the Ang/Tie2 pathway plays a significant role in human breast tumor angiogenesis but provide no initial evidence for direct regulation of the pathway by estrogen.  (+info)

Isolation and expression analysis of three zebrafish angiopoietin genes. (12/298)

The Tie1 and Tie2 receptor tyrosine kinases and the Tie2 ligands, the angiopoietins, play critical roles in vertebrate vascular embryogenesis, helping to mediate the interaction between endothelial cells and the pericytes or vascular smooth muscle cells that envelop and support them. We have obtained full-length cDNA sequences for zebrafish orthologs of angiopoietin-1 (ang1), angiopoietin-2 (ang2), and angiopoietin-like-3 (angptl3). Ang1 is expressed in head ventral mesenchyme, in the ventromedial region of somites, in mesenchyme surrounding trunk axial vessels, and in the hypochord, a transient embryonic structure of endodermal origin that has been implicated in dorsal aorta assembly in both zebrafish and Xenopus. Ang2 is expressed in head and anterior trunk ventral mesenchyme and the developing pronephric glomeruli. Angptl3 is expressed in the yolk syncytial layer.  (+info)

Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. (13/298)

In this study, we assessed the effects of in vivo hypoxia on the expression of Tie-2 receptors and angiopoietins in various organs of conscious rats and correlated these effects with the expression of hypoxia-inducible factor-1 (HIF-1). RT-PCR and Southern blotting were used to amplify mRNA expression of angiopoietin-1, -2, and -3, Tie-2, and HIF-1 alpha in tissues of normoxic and hypoxic (fraction of inspired oxygen of 9--10% for either 12 or 48 h) rats. Hypoxia provoked a decline in angiopoietin-1 mRNA and Tie-2 mRNA, protein, and phosphorylation levels in the lung, liver, cerebellum, and heart but not in the kidney and diaphragm. In comparison, hypoxia raised the levels of angiopoietin-2 mRNA in the cerebellum and angiopoietin-3 mRNA in the lung, kidney, and diaphragm. HIF-1 alpha mRNA was abundant in most organs of normoxic rats but was significantly induced in the kidney and diaphragm of hypoxic rats. We conclude that in vivo hypoxia exerts inhibitory effects on the activity of the angiopoietin-1/Tie-2 receptor pathway through reduction of angiopoietin-1 and upregulation of angiopoietin-2 and -3. Induction of angiopoietin-3 in the kidney and diaphragm of hypoxic rats could be mediated through the HIF-1 transcription factor.  (+info)

The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea. (14/298)

The human cornea-specific protein cornea-derived transcript 6 (CDT6) is a member of the angiopoietin gene family. We report the structural and functional characterization of CDT6. We demonstrate that CDT6 is a secreted protein that folds into disulfide-linked homotetramers by coiled-coil interactions. The finding that CDT6 is expressed at high levels in the avascular corneal stromal layer suggested that the protein, similar to certain angiopoietins, acts as a negative regulator of angiogenesis. To test this hypothesis and to assay the effect of the protein on a growing tissue with high vascular density, CDT6 was expressed in a mouse xenograft model. Expression of CDT6 led to a reduction in tumor growth and aberrant blood vessel formation by inducing massive fibrosis. Interestingly, expression of CDT6 also resulted in the deposition of extracellular matrix components typical for the mature corneal stromal layer. These observations strongly suggest a role as morphogen for CDT6 in inducing a corneal phenotype in vivo.  (+info)

ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. (15/298)

The angiopoietin family of secreted factors is functionally defined by the C-terminal fibrinogen (FBN)-like domain, which mediates binding to the Tie2 receptor and thereby facilitates a cascade of events ultimately regulating blood vessel formation. By screening expressed sequence tag data bases for homologies to a consensus FBN-like motive, we have identified ANGPTL3, a liver-specific, secreted factor consisting of an N-terminal coiled-coil domain and the C-terminal FBN-like domain. Co-immunoprecipitation experiments, however, failed to detect binding of ANGPTL3 to the Tie2 receptor. A molecular model of the FBN-like domain of ANGPTL3 was generated and predicted potential binding to integrins. This hypothesis was experimentally confirmed by the finding that recombinant ANGPTL3 bound to alpha(v)beta(3) and induced integrin alpha(v)beta(3)-dependent haptotactic endothelial cell adhesion and migration and stimulated signal transduction pathways characteristic for integrin activation, including phosphorylation of Akt, mitogen-activated protein kinase, and focal adhesion kinase. When tested in the rat corneal assay, ANGPTL3 strongly induced angiogenesis with comparable magnitude as observed for vascular endothelial growth factor-A. Moreover, the C-terminal FBN-like domain alone was sufficient to induce endothelial cell adhesion and in vivo angiogenesis. Taken together, our data demonstrate that ANGPTL3 is the first member of the angiopoietin-like family of secreted factors binding to integrin alpha(v)beta(3) and suggest a possible role in the regulation of angiogenesis.  (+info)

Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. (16/298)

The angiopoietins comprise a family of proteins that have pro or antiangiogenic activities. Through a proprietary technology designed to identify transcripts of all expressed genes, we isolated a cDNA encoding an angiopoietin-related protein that we designate angioarrestin. The mRNA expression profile of angioarrestin was striking in that it was down-regulated in many tumor tissues when compared with adjacent nontumor tissue, suggesting a role for this protein in tumor inhibition. To test this hypothesis, we ectopically expressed angioarrestin in HT1080 tumor cells and measured pulmonary tumor nodule formation in nude mice. HT1080 cells expressing angioarrestin showed a marked reduction in the number and size of tumor nodules. In vitro, the recombinant protein was systematically tested in a number of endothelial cell assays and found to block critical processes involved in the angiogenic cascade, such as vascular endothelial growth factor/basic fibroblast growth factor-mediated endothelial cell proliferation, migration, tubular network formation, and adhesion to extracellular matrix proteins. These findings reveal a novel function for angioarrestin as an angiogenesis inhibitor and indicate that the molecule may be a potential cancer therapeutic.  (+info)