Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. (1/540)

Using homology-based PCR, we have isolated cDNA encoding a novel member (491 amino acids) of the angiopoietin (Ang) family from human adult heart cDNA and have designated it angiopoietin-3 (Ang3). The NH2-terminal and COOH-terminal portions of Ang-3 contain the characteristic coiled-coil domain and fibrinogen-like domain that are conserved in other known Angs. Ang3 has a highly hydrophobic region at the N-terminus (approximately 21 amino acids) that is typical of a signal sequence for protein secretion. Ang3 mRNA is most abundant in adrenal gland, placenta, thyroid gland, heart and small intestine in human adult tissues. Additionally, Ang3 is a secretory protein, but is not a mitogen in endothelial cells.  (+info)

Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. (2/540)

Recent studies have shown that the angiopoietin-Tie2 system is a predominant regulator of vascular integrity. In this study, we investigated the effect of two known angiogenic stimuli, hypoxia and vascular endothelial growth factor (VEGF), on these molecules. VEGF induced both a time- and concentration-dependent increase in angiopoietin-2 (Ang2) mRNA expression in bovine microvascular endothelial cells. This up-regulation was derived primarily from an increased transcription rate as evidenced by nuclear run-on assay and mRNA decay study. The increased Ang2 expression upon VEGF treatment was almost totally abolished by inhibition of tyrosine kinase or mitogen-activated protein kinase and partially by suppression of protein kinase C. Hypoxia also directly increased Ang2 mRNA expression. In contrast, Ang1 and Tie2 responded to neither of these stimuli. The enhanced Ang2 expression following VEGF stimulation and hypoxia was accompanied by de novo protein synthesis as detected by immunoprecipitation. In a mouse model of ischemia-induced retinal neovascularization, Ang2 mRNA was up-regulated in the ischemic inner retinal layer, and remarkable expression was observed in neovascular vessels. These data suggest that both hypoxia- and VEGF-induced neovascularization might be facilitated by selective induction of Ang2, which deteriorates the integrity of preexisting vasculature.  (+info)

Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. (3/540)

In contrast with the prevailing view that most tumors and metastases begin as avascular masses, evidence is presented here that a subset of tumors instead initially grows by coopting existing host vessels. This coopted host vasculature does not immediately undergo angiogenesis to support the tumor but instead regresses, leading to a secondarily avascular tumor and massive tumor cell loss. Ultimately, however, the remaining tumor is rescued by robust angiogenesis at the tumor margin. The expression patterns of the angiogenic antagonist angiopoietin-2 and of pro-angiogenic vascular endothelial growth factor (VEGF) suggest that these proteins may be critical regulators of this balance between vascular regression and growth.  (+info)

Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. (4/540)

PURPOSE: To elucidate the potential role of angiopoietins and the Tie2 system in choroidal neovascularization. METHODS: Surgically excised choroidal neovascular membranes (CNVMs) were obtained at vitrectomy from five eyes with age-related macular degeneration, three eyes with idiopathic neovascular maculopathy, and two eyes had degenerative myopia and two eyes had angioid streaks. Light microscopic immunohistochemistry was performed to detect cytokines such as vascular endothelial growth factor (VEGF), Ang1, and Ang2 and cellular components such as retinal pigment epithelial (RPE) cells, macrophages, and endothelial cells. Immunofluorescent double staining using confocal microscopy was performed to identify the cell types that secrete specific cytokines. RESULTS: Ang1 and Ang2 were positive in all surgically excised CNVMs, regardless of the primary disease. Double staining revealed that many of the cytokeratin, CD68 and factor VIII positive cells also had Ang1 and Ang2 immunoreactivities. In contrast to Ang1, Ang2 immunoreactivity tends to be higher in the highly vascularized regions of many CNVMs, and the localization was very similar to that of VEGF staining. Almost all vascular structures had prominent immunoreactivity for Tie2, which was confirmed by double staining for Tie2 and factor VIII. Tie2 immunoreactivity was also observed in the RPE monolayer and in pigmented, polygonal, and fibroblast-like cells in the stroma. CONCLUSIONS: Present findings that Ang2 and VEGF are co-upregulated and that Tie2 is expressed in a variety of cell types in CNVMs further support a crucial role of the interaction between VEGF and Ang2 in pathologic angiogenesis of CNVM formation.  (+info)

Expression of angiopoietin-1, angiopoietin-2, and the Tie-2 receptor tyrosine kinase during mouse kidney maturation. (5/540)

The Tie-2 receptor tyrosine kinase transduces embryonic endothelial differentiation, with Angiopoietin-1 (Ang-1) acting as a stimulatory ligand and Ang-2 postulated to be a naturally occurring inhibitor. Expression of these genes was sought during mouse kidney maturation from the onset of glomerulogenesis (embryonic day 14 [E14]) to the end of nephron formation (2 wk postnatal [P2]), and during medullary maturation into adulthood (P8). Using Northern and slot blotting of RNA extracted from whole organs, these three genes were expressed throughout the experimental period with peak levels at P2 to P3. By in situ hybridization analysis at E18, P1, and P3, Ang-1 mRNA was found to localize to condensing renal mesenchymal cells, proximal tubules, and glomeruli in addition to maturing tubules of the outer medulla. In contrast, Ang-2 transcripts were more spatially restricted, being detected only in differentiating outer medullary tubules and the vasa recta bundle area. Using in situ hybridization and immunohistochemistry, Tie-2 was detected in capillaries of the nephrogenic cortex, glomerular tufts, cortical interstitium, and medulla including vessels in the vasa recta. Using Western blotting of protein extracted from whole organs, Tie-2 protein was detected between E14 and P8 with tyrosine phosphorylated Tie-2 evident from E18. These data are consistent with the hypothesis that Tie-2 has roles in maturation of both glomeruli and vasa rectae.  (+info)

New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. (6/540)

Our analyses in several different tumor settings challenge the prevailing view that malignancies and metastases generally initiate as avascular masses that only belatedly induce vascular support. Instead, we find that malignant cells rapidly co-opt existing host vessels to form an initially well-vascularized tumor mass. Paradoxically, the co-opted vasculature does not undergo angiogenesis to support the growing tumor, but instead regresses (perhaps as part of a normal host defense mechanism) via a process that involves disruption of endothelial cell/smooth muscle cell interactions and endothelial cell apoptosis. This vessel regression in turn results in necrosis within the central part of the tumor. However, robust angiogenesis is initiated at the tumor margin, rescuing the surviving tumor and supporting further growth. The expression patterns of Angiopoietin-2 (the natural antagonist for the angiogenic Tie2 receptor) and vascular endothelial growth factor (VEGF) strongly implicate these factors in the above processes. Angiopoietin-2 is highly induced in co-opted vessels, prior to VEGF induction in the adjacent tumor cells, providing perhaps the earliest marker of tumor vasculature and apparently marking the co-opted vessels for regression. Subsequently, VEGF upregulation coincident with Angiopoietin-2 expression at the tumor periphery is associated with robust angiogenesis. Thus, in tumors, Angiopoietin-2 and VEGF seem to reprise the roles they play during vascular remodeling in normal tissues, acting to regulate the previously underappreciated balance between vascular regression and growth.  (+info)

Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. (7/540)

Activity of endothelial Tie2 receptor tyrosine kinase is modulated by two naturally occurring, secreted ligands, angiopoietin-1 and -2, which have opposing effects on its phosphorylation. Receptor tyrosine kinase activation requires receptor dimerization/multimerization, which, for many receptors, is mediated by homo-oligomeric ligands binding to and bridging receptor molecules. We show here that angiopoietin-1 and -2 form distinct arrays of disulfide-linked homo-oligomeric complexes. Their mobilities on nonreducing gels suggest that angiopoietin-2 exists predominantly as a homodimer but also forms higher order multimers. In contrast, angiopoietin-1 forms some homotrimers, but predominantly exists in higher order multimers. These two structurally related, 60% homologous ligands are predominantly composed of an amino-terminal coiled coil domain and a carboxyl-terminal fibrinogen-like domain. We show that their distinct oligomerization patterns are determined by their coiled coil domains and, furthermore, that their coiled coil domains, but not their fibrinogen-like domains, are sufficient to mediate formation of disulfide-linked homo-oligomers. In contrast, the differential effects of these ligands on endothelial Tie2 phosphorylation is mediated by their fibrinogen-like domains. We conclude from these studies that the coiled coil and fibrinogen-like domains of the angiopoietins have distinct functions with the coiled coil domain mediating ligand homo-oligomerization and the fibrinogen-like domain mediating ligand activity.  (+info)

Vascular endothelial growth factor (VEGF) and angiopoietin regulation by gonadotrophin and steroids in macaque granulosa cells during the peri-ovulatory interval. (8/540)

The role of endothelial cell-specific growth factors in the vascularization of the primate peri-ovulatory follicle was examined. Experiments were designed firstly to detect expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) in granulosa cells and secondly, to determine whether gonadotrophins and/or steroids regulate their expression during the peri-ovulatory interval. Granulosa cells and follicular fluid were collected from rhesus macaques undergoing ovarian stimulation before (0 h), 12, or 36 h after a bolus of ovulatory human chorionic gonadotrophin (HCG), with or without steroid ablation and progestin replacement. VEGF, Ang-1 and Ang-2 mRNA were all detected prior to the ovulatory stimulus. Whereas follicular fluid VEGF concentrations increased 6-fold (P < 0.05) between 0 and 12 h, VEGF mRNA values were unchanged and were unaffected by steroid ablation. Ang-1 mRNA decreased from 0 to 12 h (P < 0.05), followed by a 30-fold increase (P < 0.05) at 36 h, while Ang-2 mRNA values were unchanged between 0, 12 and 36 h. Steroid ablation decreased (P < 0.05) Ang-1 mRNA at 36 h, and Ang-2 mRNA at 12 h, while only Ang-1 was restored by progestin replacement. These data suggest a dynamic expression of vascular-specific growth factors in a gonadotrophin-dependent, steroid-independent (VEGF) or steroid-dependent (Ang-1) manner in granulosa cells of peri-ovulatory follicles of primates.  (+info)