Investigations into pharmacological antagonism of general anaesthesia. (17/226)

The effects of convulsant drugs, and of thyrotropin releasing hormone (TRH), were examined on the general anaesthetic actions of ketamine, ethanol, pentobarbitone and propofol in mice. The aim was to investigate the possibility of selective antagonism, which, if seen, would provide information about the mechanism of the anaesthesia. The general anaesthetic effects of ketamine were unaffected by bicuculline; antagonism was seen with 4-aminopyridine and significant potentiation with 300 mg kg(-1) NMDLA (N-methyl-DL-aspartate). The calcium agonist, Bay K 8644, potentiated the anaesthesia produced by ketamine and antagonism of such anaesthesia was seen with TRH. A small, but significant, antagonism of the general anaesthesia produced by ethanol was seen with bicuculline, and a small, significant, potentiation with 4-aminopyridine. There was an antagonist effect of TRH, but no effect of NMDLA. Potentiation of the anaesthetic effects of pentobarbitone was seen with NMDLA and with 4-aminopyridine and the lower dose of bicuculline (2.7 mg kg(-1)) also caused potentiation. There was no significant change in the ED(50) value for pentobarbitone anaesthesia with TRH. Bicuculline did not alter the anaesthetic actions of propofol, while potentiation was seen with NMDLA and 4-aminopyridine. TRH had no significant effect on propofol anaesthetic, but Bay K 8644 at 1 mg kg(-1) significantly potentiated the anaesthesia. These results suggest that potentiation of GABA(A) transmission or inhibition of NMDA receptor-mediated transmission do not appear to play a major role in the production of general anaesthesia by the agents used.  (+info)

Effects of isoflurane, sevoflurane and propofol anaesthesia on jugular venous oxygen saturation in patients undergoing coronary artery bypass surgery. (18/226)

We investigated the effect of sevoflurane, isoflurane and propofol on jugular venous bulb oxygen saturation (SjO2) in 21 patients undergoing coronary artery bypass graft surgery (CABG) during and after normothermic cardiopulmonary bypass (CPB). Patients received a standardized anaesthetic consisting of fentanyl, midazolam and were then randomly allocated to receive either isoflurane, sevoflurane or propofol for maintenance. SjO2 values were significantly lower than baseline 1 h after CPB in the propofol but not the isoflurane or the sevoflurane groups. Furthermore, SjO2 values were significantly higher during CPB in the isoflurane group (P = 0.0081) and significantly lower 6 h after CPB in the sevoflurane group (P = 0.0447) when compared to the propofol group. We conclude that jugular venous desaturation during and after normothermic CPB is more likely during propofol anaesthesia.  (+info)

Identification of sites of incorporation in the nicotinic acetylcholine receptor of a photoactivatible general anesthetic. (19/226)

Most general anesthetics including long chain aliphatic alcohols act as noncompetitive antagonists of the nicotinic acetylcholine receptor (nAChR). To locate the sites of interaction of a long chain alcohol with the Torpedo nAChR, we have used the photoactivatible alcohol 3-[(3)H]azioctanol, which inhibits the nAChR and photoincorporates into nAChR subunits. At 1 and 275 microm, 3-[(3)H]azioctanol photoincorporated into nAChR subunits with increased incorporation in the alpha-subunit in the desensitized state. The incorporation into the alpha-subunit was mapped to two large proteolytic fragments. One fragment of approximately 20 kDa (alpha V8-20), containing the M1, M2, and M3 transmembrane segments, showed enhanced incorporation in the presence of agonist whereas the other of approximately 10 kDa (alpha V8-10), containing the M4 transmembrane segment, did not show agonist-induced incorporation of label. Within alpha V8-20, the primary site of incorporation was alpha Glu-262 at the C-terminal end of alpha M2, labeled preferentially in the desensitized state. The incorporation at alpha Glu-262 approached saturation between 1 microm, with approximately 6% labeled, and 275 microm, with approximately 30% labeled. Low level incorporation was seen in residues at the agonist binding site and the protein-lipid interface at approximately 1% of the levels in alpha Glu-262. Therefore, the primary binding site of 3-azioctanol is within the ion channel with additional lower affinity interactions within the agonist binding site and at the protein-lipid interface.  (+info)

Anticonvulsants but not general anesthetics have differential blocking effects on different T-type current variants. (20/226)

The sensitivity to anticonvulsants and anesthetics of Ca(2+) currents arising from alpha1G and alpha1H subunits was examined in stably transfected HEK293 cells. For comparison, in some cases blocking effects on dorsal root ganglion (DRG) T currents were also examined under identical ionic conditions. The anticonvulsant, phenytoin, which partially blocks DRG T current, blocked alpha1G current completely but with weaker affinity ( approximately 140 microM). Among different cells, alpha1H current exhibited either of two responses to phenytoin. In one subpopulation of cells, phenytoin produced a partial, higher affinity block (IC(50) approximately 7.2 microM, maximum block approximately 43%) similar to that in DRG neurons. In other cells, phenytoin produced complete, but lower affinity, blockade (IC(50) approximately 138 microM, maximum block approximately 89%). Another anticonvulsant, alpha-methyl-alpha-phenylsuccinimide (MPS), blocked DRG current partially, but blocked both alpha1G and alpha1H currents completely with weaker affinity ( approximately 1.7 mM). These data suggest that higher affinity blockade of T-type currents by phenytoin and MPS may require additional regulatory factors that can contribute to native T-type channels. In contrast, anesthetics blocked all T current variants similarly and completely. Block of alpha1G current by anesthetics had the following order of potency: propofol (IC(50) approximately 20.5 microM) > etomidate ( approximately 161 microM) = octanol ( approximately 160 microM) > isoflurane ( approximately 277 microM) > ketamine ( approximately 1.2 mM), comparable with results on DRG T currents. Barbiturates completly blocked alpha1G currents with potency [thiopental ( approximately 280 microM), pentobarbital ( approximately 310 microM), phenobarbital ( approximately 1.54 mM)] similar to that in DRG cells. The effects of propofol, octanol, and pentobarbital on alpha1H currents were indistinguishable from effects on alpha1G currents.  (+info)

Lumbar plexus block reduces pain and blood loss associated with total hip arthroplasty. (21/226)

BACKGROUND: The usefulness of peripheral nerve blockade in the anesthetic management of hip surgery has not been clearly established. Because sensory afferents from the hip include several branches of the lumbar plexus, the authors hypothesized that a lumbar plexus block could reduce pain from a major hip procedure. METHODS: In a double-blind prospective trial, 60 patients undergoing total hip arthroplasty were randomized to receive general anesthesia with (plexus group, n = 30) or without (control group, n = 30) a posterior lumbar plexus block. The block was performed after induction using a nerve stimulator, and 0.4 ml/kg bupivacaine, 0.5%, with epinephrine was injected. General anesthesia was standardized, and supplemental fentanyl was administered per hemodynamic guidelines. Postoperative pain and patient-controlled intravenous morphine use were serially assessed for 48 h. RESULTS: The proportion of patients receiving supplemental fentanyl intraoperatively was more than 3 times greater in the control group (20 of 30 vs. 6 of 29, P = 0.001). In the postanesthesia care unit, a greater than fourfold reduction in pain scores was observed in the plexus group (visual analogue scale [VAS] pain score at arrival 1.3 +/- 2 vs. 5.6 +/- 3, P < 0.001), and "rescue" morphine boluses (administered if VAS > 3) were administered 10 times less frequently (in 2 of 28 vs. in 22 of 29 patients, P < 0.0001). Pain scores and morphine consumption remained significantly lower in the plexus group until 6 h after randomization (VAS at 6 h, 1.4 +/- 1.3 vs. 2.4 +/- 1.4, P = 0.007; cumulative morphine at 6 h, 5.6 +/- 4.7 vs. 12.6 +/- 7.5 mg, P < 0.0001). Operative and postoperative (48 h) blood loss was modestly decreased in the treated group. Epidural-like distribution of anesthesia occurred in 3 of 28 plexus group patients, but no other side-effects were noted. CONCLUSIONS: Posterior lumbar plexus block provides effective analgesia for total hip arthroplasty, reducing intra- and postoperative opioid requirements. Moreover, blood loss during and after the procedure is diminished. Epidural anesthetic distribution should be anticipated in a minority of cases.  (+info)

Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. (22/226)

Human serum albumin (HSA) is one of the most abundant proteins in the circulatory system and plays a key role in the transport of fatty acids, metabolites, and drugs. For many drugs, binding to serum albumin is a critical determinant of their distribution and pharmacokinetics; however, there have as yet been no high resolution crystal structures published of drug-albumin complexes. Here we describe high resolution crystal structures of HSA with two of the most widely used general anesthetics, propofol and halothane. In addition, we describe a crystal structure of HSA complexed with both halothane and the fatty acid, myristate. We show that the intravenous anesthetic propofol binds at two discrete sites on HSA in preformed pockets that have been shown to accommodate fatty acids. Similarly we show that the inhalational agent halothane binds (at concentrations in the pharmacologically relevant range) at three sites that are also fatty acid binding loci. At much higher halothane concentrations, we have identified additional sites that are occupied. All of the higher affinity anesthetic binding sites are amphiphilic in nature, with both polar and apolar parts, and anesthetic binding causes only minor changes in local structure.  (+info)

Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. (23/226)

PURPOSE: To determine the effect of several common general anesthetics on intraocular pressure (IOP) after experimental aqueous outflow obstruction in the rat. METHODS: A single episcleral vein injection of hypertonic saline was used to sclerose aqueous humor outflow pathways and produce elevated IOP in Brown Norway rats. Animals were housed in either standard lighting or a constant low-level light environment. Awake IOPs were determined using a TonoPen (Mentor, Norwell, MA) immediately before induction of anesthesia by either isoflurane, ketamine, or a mixture of injectable anesthetics (xylazine, ketamine, and acepromazine). For each anesthetic, IOPs were measured immediately after adequate sedation (time 0) and at 5-minute intervals, up to 20 minutes. RESULTS; Awake IOPs ranged from 18 to 52 mm Hg. All anesthetics resulted in a statistically significant (P: < 0.01) reduction in measured IOP at every duration of anesthesia when compared with the corresponding awake IOP. With increasing duration of anesthesia, measured IOP decreased approximately linearly for both the anesthetic mixture and isoflurane. However, with ketamine, IOP declined to 48% +/- 11% (standard lighting) and 60% +/- 7% (constant light) of awake levels at 5 minutes of anesthesia, where it remained stable. In fellow eyes, the SD of the mean IOP in animals under anesthesia was always greater than the corresponding SD of the awake mean. Anesthesia's effects in normal eyes and eyes with elevated IOP were indistinguishable. CONCLUSIONS: All anesthetics resulted in rapid and substantial decreases in IOP in all eyes and increased the interanimal variability in IOPs. Measurement of IOP in awake animals provides the most accurate documentation of pressure histories for rat glaucoma model studies.  (+info)

Patch clamp studies of motor neurons in spinal cord slices: a tool for high-resolution analysis of drug actions. (24/226)

AIM: To develop a tool for detailed analysis of spinally acting anesthetic and analgesic agents. METHODS: Studies were done on visually identified motor neurons in 400 microns thick spinal cord slices from 14-23 d old rats using patch clamp techniques. Ethanol was used as a prototype general anesthetic agent. RESULTS: Cell bodies in the ventrolateral horn identified as motor neurons by retrograde fluorescent labeling had a mean dimension of 32 +/- 5 microns (x +/- s, n = 25). Mean resting potential was -62.8 +/- 2.4 mV; input resistance was 44 +/- 24 M omega (n = 19). Threshold was -44 +/- 7 mV, and action potential amplitude 101 +/- 9 mV from baseline. Ethanol concentrations at and below 50-200 mmol/L decreased motor neuron excitability to the injected current; there was no effect on resting potential, but a variable reversible increase in input resistance. Ethanol reversibly depressed the excitatory postsynaptic potential, with a dose-response relationship similar to that previously observed for the population excitatory postsynaptic potential in intact spinal cord in vitro. Ethanol also reversibly depressed currents evoked by glutamate, reducing total charge transfer to 40% +/- 26% of control (x +/- s; n = 4). CONCLUSION: Reduction of connectivity in this relatively thick slice preparation does not significantly modify drug actions. The actions of ethanol on excitatory synaptic transmission observed in intact spinal cord are in part due to postsynaptic effects on motor neurons.  (+info)