Androgen insensitivity syndrome in a thoroughbred mare (64, XY--testicular feminization). (25/139)

A Thoroughbred mare was presented for stallion-like behavior. Reproductive and ultrasonographic evaluation, testosterone assays, and karyotyping confirmed a diagnosis of androgen insensitivity syndrome (64, XY--testicular feminization). Surgery to remove abdominal testicles was successful in alleviating the behavioral abnormality. This condition is discussed with reference to the current literature.  (+info)

A role for the androgen receptor in collagen content of the skin. (26/139)

Collagen, the major macromolecular component of skin, is responsible for maintaining the structural integrity of the tissue as well as for providing important functional characteristics, such as pliability and thickness. We have been studying the structure and regulation of collagen in mouse mutations affecting the skin. In the course of these studies, we found that there are significant differences in collagen content between the skin of wild-type male and female mice, which become evident at puberty. Furthermore, male mice with an X-linked mutation in the androgen receptor gene (formerly called testicular feminization and abbreviated as Ar(Tfm)) showed decreased levels of collagen, indicating that the androgen receptor pathway contributes to the observed differences. These findings demonstrate that there are striking differences in the collagen content of skin between male and female mice, and provide a biochemical explanation for these differences.  (+info)

Transactivation properties of wild-type and mutant androgen receptors in transiently transfected primary human fibroblasts. (27/139)

BACKGROUND: Stromal cells play key roles during androgen-mediated male sexual differentiation. Our objective was to establish a transient transfection method for primary human fibroblasts enabling functional characterization of wild-type (wt) and mutant androgen receptor (AR) plasmid constructs, corresponding to partial and complete androgen insensitivity syndrome (PAIS/CAIS). METHODS: An AR-negative fibroblast strain (ARD842) was established from the gonads of a CAIS patient. Wt-AR or either mutants L712F (PAIS), R774C or V866M (CAIS) were transfected using a polyamine-based procedure. Alternatively, two AR-positive male foreskin fibroblast strains were investigated. Androgen-induced activation of two co-transfected reporter plasmids ((ARE)(2)TATA-, MMTV-luciferase) was measured. RESULTS: All three fibroblast strains showed a ligand-dependent rise of luciferase activity after transfection of wt-AR. Mutant plasmids were assessed in AR-negative ARD842 cells. While L712F showed high partial activity, R774C and V866M were nearly inactive. The intrinsic AR of normal foreskin fibroblasts revealed no measurable ligand-inducible reporter gene activity. CONCLUSIONS: Polyamine-based transfection of AR plasmids into cultured fibroblasts provides a promising tool for analysis of AR transactivation, thereby considering a stromal cellular background. This is supported by the mutant ARs which showed the expected levels of impaired transactivation with respect to the corresponding AIS phenotypes. The role of the intrinsic AR in normal male human foreskin fibroblasts needs further exploration.  (+info)

Coexistence of Kallmann syndrome and complete androgen insensitivity in the same patient. (28/139)

Kallmann syndrome (KS) is a developmental disease that combines hypogonadotropic hypogonadism and anosmia/hyposmia. Other congenital abnormalities may also coexist. This present report describes two sisters, aged 13 and 12 years, born from Lebanese consanguineous parents. The two sisters have complete androgen insensitivity (normal female appearance and an XY karyotype) due to a novel mutation, a C-to-G transversion in intron 2 of the androgen receptor gene, resulting in an aberrant splicing leading to an insertion of 66 nucleotides in the mRNA. In addition, the older sister has KS, together with synkinesia and multiple skeletal abnormalities, mainly kyphosis, vertebral abnormalities, and short right hand and feet. Her testosterone, FSH and LH levels were very low compared with her younger sister. No mutation in the KAL1 and FGFR1/KAL2 genes were found. This unique report raises the possibility of an autosomal recessive or X-linked form of KS with new phenotypic expression.  (+info)

Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. (29/139)

Androgens mediate their effects in target cells via the androgen receptor (AR), which acts predominantly as a ligand-dependent transcription factor. In addition, androgens induce rapid activation of second messenger signal transduction cascades, and this is thought to occur via non-genomic mechanisms. We have used the Cre/loxP system to generate an AR knockout (ARKO) mouse targeting exon 3, which encodes the second zinc finger of the DNA-binding domain. To generate universal ARKO mice, floxed AR mice were mated with CMV-Cre mice, which express Cre recombinase ubiquitously. Deletion of the floxed allele in our mice does not disrupt the reading frame, and has been designed so that the mutant AR can bind ligand but not target genes. ARKO males displayed a complete androgen insensitivity phenotype, with female external genitalia and a reduction in body weight compared with wild-type males (P < 0.001). Testes of ARKO males were smaller than control males (P < 0.0001) and were located intra-abdominally. We have demonstrated that genotypically XY mice lacking the second zinc finger of the AR have a female phenotype, and we conclude that the genomic actions of the AR (mediated by DNA binding) are indispensable for normal male sexual differentiation.  (+info)

Probing the functional link between androgen receptor coactivator and ligand-binding sites in prostate cancer and androgen insensitivity. (30/139)

The androgen receptor (AR) is a ligand-activated transcription factor required for male sex development and virilization and contributes to prostate cancer initiation and progression. High affinity androgen binding triggers conformational changes required for AR transactivation. Here we characterized naturally occurring AR gene mutations in the region of activation function 2 (AF2) that decrease or increase AR transcriptional activity by altering the region bounded by AF2 and the ligand binding pocket without affecting equilibrium androgen binding affinity. In the androgen insensitivity syndrome, germ line AR mutations increase the androgen dissociation rate and reduce AR FXXLF motif binding and the recruitment of steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs. In prostate cancer, somatic AR mutations in AF2 or near the bound ligand slow androgen dissociation and increase AR stabilization and coactivator recruitment. Crystal structures of the AR ligand binding domain bound to R1881 and FXXLF or LXXLL motif peptide indicate the mutations are proximal to the AF2 bound peptide, adjacent to the ligand pocket, or in a putative ligand gateway. The results suggest a bidirectional structural relay between bound ligand and coactivator that establishes AR functional potency in vivo.  (+info)

Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. (31/139)

Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.  (+info)

A novel androgen receptor mutation resulting in complete androgen insensitivity syndrome and bilateral Leydig cell hyperplasia. (32/139)

Androgens drive male secondary sexual differentiation and maturation. Mutations in the androgen receptor (AR) gene cause a broad spectrum of abnormal phenotypes in humans, ranging from mild through partial to complete androgen insensitivity. We have analyzed the AR gene by using denaturing high-performance liquid chromatography (DHPLC) and direct sequencing and have studied gonads histologically in a familial case of complete androgen insensitivity syndrome. Sequence analysis of the AR gene showed a novel C2578T missense mutation, resulting in the replacement of a highly conserved leucine residue with phenylalanine (L859F) in ligand-binding domain of the receptor. The residue L859, located in helix 10 of the androgen receptor, plays a significant role in overall architecture of ligand-binding pocket. The mutation was absent from the father, normal brother of the patients, and 100 normal males recruited in this study as controls. The inheritance of the mutation in the family clearly shows that C2578T is the underlying mutation for the eventual phenotype in the patients. Histology of patient's gonads showed Leydig cell hyperplasia, with a few or no spermatogonium. It is thought that AR gene mutations result in hormonal imbalance, resulting in the high levels of luteinizing hormone (LH) and ultimately Leydig cell hyperplasia or tumor formation. In the present study, we have reported a rare familial case of Leydig cell hyperplasia despite consistently normal LH levels. The finding will help in giving counseling to this family and prevent the transmission of the mutated X chromosome to the coming generations.  (+info)