Prevalence and zoonotic potential of canine hookworms in Malaysia.
(57/92)
(+info)
Changing patterns of gastrointestinal parasite infections in Cambodian children: 2006-2011.
(58/92)
(+info)
Interaction of L-canaline with ornithine aminotransferase of the tobacco hornworm, Manduca sexta (Sphingidae).
(59/92)
Ornithine aminotransferase (L-ornithine:2-oxo-acid aminotransferase (EC 2.6.1.13)) has been purified to homogeneity from last instar larvae of the tobacco hornworm, Manduca sexta (Sphingidae). This enzyme is a 144,000-Da tetramer constructed from 36,000-Da protomeric units. It has a high aspartate/asparagine and glutamate/glutamine content and 2 cysteine residues/subunit. All 8 cysteine residues can react with N-ethylmaleimide to inactivate the enzyme. Maintenance of the enzyme in the presence of 2-mercaptoethanol and dithiothreitol maximizes enzymatic activity and improves storage conditions, presumably by protecting these sulfhydryl groups. The apparent Km values for L-ornithine and 2-oxoglutaric acid are 2.3 and 3.2 mM, respectively. The turnover number is 2.0 +/- 0.1 mumol min-1 mumol-1. L-Canaline (L-2-amino-4-(aminooxy)butyric acid) is a potent ornithine aminotransferase inhibitor. Reaction of the enzyme with L-[U-14C]canaline produces an enzyme-bound, covalently linked, radiolabeled canaline-pyridoxal phosphate oxime. The L-[U-14C]canaline-pyridoxal phosphate oxime has been isolated from canaline-treated enzyme. Dialysis of canaline-inactivated ornithine aminotransferase against free pyridoxal phosphate slowly reactivates the enzyme as the oxime is replaced by pyridoxal phosphate. Analysis of L-[U-14C]canaline binding to ornithine aminotransferase reveals the presence of 4 mol of pyridoxal phosphate/mol of enzyme. (+info)
Soil-transmitted helminth infections and correlated risk factors in preschool and school-aged children in rural Southwest China.
(60/92)
(+info)
Modelling the ecological niche of hookworm in Brazil based on climate.
(61/92)
The distribution of hookworm in schistosomiasis-endemic areas in Brazil was mapped based on climate suitability. Known biological requirements of hookworm were fitted to data in a monthly long-term normal climate grid (18 x 18 km) using geographical information systems. Hookworm risk models were produced using the growing degree day (GDD) water budget (WB) concept. A moisture-adjusted model (MA-GDD) was developed based on accumulation of monthly temperatures above a base temperature of 15 degrees C (below which there is no lifecycle progression of Necator americanus) conditional on concurrent monthly values (rain/potential, evapotranspiration) of over 0.4. A second model, designated the gradient index, was calculated based on the monthly accumulation of the product of GDD and monthly WB values (GDD x WB). Both parameters had a significant positive correlation to hookworm prevalence. In the northeastern part of Brazil (the Caatinga), low hookworm prevalence was due to low soil moisture content, while the low prevalence in southern Brazil was related to low mean monthly temperatures. Both environmental temperature and soil moisture content were found to be important parameters for predicting the prevalence of N. americanus. (+info)
Effects of treatment on IgE responses against parasite allergen-like proteins and immunity to reinfection in childhood schistosome and hookworm coinfections.
(62/92)
(+info)
Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Cote d'Ivoire.
(63/92)
(+info)
High prevalence of schistosomiasis in Mbita and its adjacent islands of Lake Victoria, western Kenya.
(64/92)
(+info)