How FMN binds to anabaena apoflavodoxin: a hydrophobic encounter at an open binding site. (73/485)

Molecular recognition begins when two molecules approach and establish interactions of certain strength. The mechanisms of molecular recognition reactions between biological molecules are not well known, and few systems have been analyzed in detail. We investigate here the reaction between an apoprotein and its physiological cofactor (apoflavodoxin and flavin mononucleotide) that binds reversibly to form a non-covalent complex (flavodoxin) involved in electron transfer reactions. We have analyzed the fast binding reactions between the FMN cofactor (and shorter analogs) and wild type (and nine mutant apoflavodoxins where residues interacting with FMN in the final complex have been replaced). The x-ray structures of two such mutants are reported that show the mutations are well tolerated by the protein. From the calculated microscopic binding rate constants we have performed a Phi analysis of the transition state of complex formation that indicates that the binding starts by interaction of the isoalloxazine-fused rings in FMN with residues of its hydrophobic binding site. In contrast, the phosphate in FMN, known to contribute most to the affinity of the final holoflavodoxin complex, is not bound in the transition state complex. Both the effects of ionic strength and of phosphate concentration on the wild type complex rate constant agree with this scenario. As suggested previously by nmr data, it seems that the isoalloxazine-binding site may be substantially open in solution. Interestingly, although FMN is a charged molecule, electrostatic interactions seem not to play a role in directing the binding, unlike what has been reported for other biological complexes. The binding can thus be best described as a hydrophobic encounter at an open binding site.  (+info)

Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. (74/485)

Circularly permuted group I intron precursor RNAs, containing end-to-end fused exons which interrupt half-intron sequences, were generated and tested for self-splicing activity. An autocatalytic RNA can form when the primary order of essential intron sequence elements, splice sites, and exons are permuted in this manner. Covalent attachment of guanosine to the 5' half-intron product, and accurate exon ligation indicated that the mechanism and specificity of splicing were not altered. However, because the exons were fused and the order of the splice sites reversed, splicing released the fused-exon as a circle. With this arrangement of splice sites, circular exon production was a prediction of the group I splicing mechanism. Circular RNAs have properties that would make them attractive for certain studies of RNA structure and function. Reversal of splice site sequences in a context that allows splicing, such as those generated by circularly permuted group I introns, could be used to generate short defined sequences of circular RNA in vitro and perhaps in vivo.  (+info)

Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. (75/485)

The genes encoding the RNA subunit of ribonuclease P from the unicellular cyanobacterium Synechocystis sp. PCC 6803, and from the heterocyst-forming strains Anabaena sp. PCC 7120 and Calothrix sp. PCC 7601 were cloned using the homologous gene from Anacystis nidulans (Synechococcus sp. PCC 6301) as a probe. The genes and the flanking regions were sequenced. The genes from Anabaena and Calothrix are flanked at their 3'-ends by short tandemly repeated repetitive (STRR) sequences. In addition, two other sets of STRR sequences were detected within the transcribed regions of the Anabaena and Calothrix genes, increasing the length of a variable secondary structure element present in many RNA subunits of ribonuclease P from eubacteria. The ends of the mature RNAs were determined by primer extension and RNase protection. The predicted secondary structure of the three RNAs studied is similar to that of Anacystis and although some idiosyncrasies are observed, fits well with the eubacterial consensus.  (+info)

A defined subset of adenylyl cyclases is regulated by bicarbonate ion. (76/485)

The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mm). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion.  (+info)

Flexible DNA bending in HU-DNA cocrystal structures. (77/485)

HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.  (+info)

PlmA, a new member of the GntR family, has plasmid maintenance functions in Anabaena sp. strain PCC 7120. (78/485)

The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 maintains a genome that is divided into a 6.4-Mb chromosome, three large plasmids of more that 100 kb, two medium-sized plasmids of 55 and 40 kb, and a 5.5-kb plasmid. Plasmid copy number can be dynamic in some cyanobacterial species, and the genes that regulate this process have not been characterized. Here we show that mutations in an open reading frame, all1076, reduce the numbers of copies per chromosome of several plasmids. In a mutant strain, plasmids pCC7120delta and pCC7120zeta are both reduced to less than 50% of their wild-type levels. The exogenous pDU1-based plasmid pAM1691 is reduced to less than 25% of its wild-type level, and the plasmid is rapidly lost. The peptide encoded by all1076 shows similarity to members of the GntR family of transcriptional regulators. Phylogenetic analysis reveals a new domain topology within the GntR family. PlmA homologs, all coming from cyanobacterial species, form a new subfamily that is distinct from the previously identified subfamilies. The all1076 locus, named plmA, regulates plasmid maintenance functions in Anabaena sp. strain PCC 7120.  (+info)

Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. (79/485)

A heterocyst is a terminally differentiated cell of cyanobacteria which is specialized in dinitrogen fixation. Heterocyst differentiation in Anabaena sp. strain PCC 7120 is triggered by deprivation of combined nitrogen in the medium. Although various genes that are upregulated during heterocyst differentiation have been reported, most studies to date were limited to individual or a small number of genes. We prepared microarrays in collaboration with other members of the Anabaena Genome Project. Here we report on the genome-wide expression analysis of the responses to nitrogen deprivation in Anabaena. Many unidentified genes, as well as previously known genes, were found to be upregulated by nitrogen deprivation at various time points. Three main profiles of gene expression were found: genes expressed transiently at an early stage (1-3 hr) of nitrogen deprivation, genes expressed transiently at a later stage (8 hr), and genes expressed when heterocysts are formed (24 hr). We also noted that many of the upregulated genes were physically clustered to form 'expressed islands' on the chromosome. Namely, large, continuous genomic regions containing many genes were upregulated in a coordinated manner. This suggests a mechanism of global regulation of gene expression that involves chromosomal structure, which is reminiscent of eukaryotic chromatin remodelling. The possible implications of this global regulation are discussed.  (+info)

Open reading frame all0601 from Anabaena sp. strain PCC 7120 represents a novel gene, cnaT, required for expression of the nitrate assimilation nir operon. (80/485)

Expression of the nitrate assimilation nir operon in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 requires the action of both the global nitrogen control transcription factor NtcA and the pathway-specific transcriptional regulator NtcB. In the genome of this cyanobacterium, the ntcB gene is found in a cluster of genes located in the complementary strand, upstream from the nir operon. Just downstream of ntcB, there is an open reading frame, all0601 (previously designated orf356 and now designated the cnaT gene), that putatively encodes a protein similar to proteins with glycosyl transferase activity and that is also present clustered together with ntcB homologues or nitrate assimilation structural genes in other cyanobacterial genomes. An insertional mutant of cnaT was generated and found to be unable to assimilate nitrate, although it could use ammonium or dinitrogen as a source of nitrogen for growth. In the mutant, under derepression conditions, nir operon mRNA (as determined by RNA-DNA hybridization and primer extension analysis) and enzymes of the nitrate reduction system (i.e., nitrate reductase and nitrite reductase) were expressed at low or undetectable levels. Inactivation of cnaT did not impair expression of ntcB, and expression of cnaT itself was constitutive and regulated by neither NtcA nor NtcB. Regulation of expression of the nir operon in Anabaena sp. strain PCC 7120 by CnaT and the previously described regulatory elements, NtcA and NtcB, is discussed.  (+info)