Respiratory terminal oxidases in the facultative chemoheterotrophic and dinitrogen fixing cyanobacterium Anabaena variabilis strain ATCC 29413: characterization of the cox2 locus. (1/21)

Upon nitrogen step-down, some filamentous cyanobacteria differentiate heterocysts, cells specialized for dinitrogen fixation, a highly oxygen sensitive process. Aerobic respiration is one of the mechanisms responsible for a microaerobic environment in heterocysts and respiratory terminal oxidases are the key enzymes of the respiratory chains. We used Anabaena variabilis strain ATCC 29413, because it is one of the few heterocyst-forming facultatively chemoheterotrophic cyanobacteria amenable to genetic manipulation. Using PCR with degenerate primers, we found four gene loci for respiratory terminal oxidases, three of which code for putative cytochrome c oxidases and one whose genes are homologous to cytochrome bd-type quinol oxidases. One cytochrome c oxidase, Cox2, was the only enzyme whose expression, tested by RT-PCR, was evidently up-regulated in diazotrophy, and therefore cloned, sequenced, and characterized. Up-regulation of Cox2 was corroborated by Northern and primer extension analyses. Strains were constructed lacking Cox1 (a previously characterized cytochrome c oxidase), Cox2, or both, which all grew diazotrophically. In vitro cytochrome c oxidase and respiratory activities were determined in all strains, allowing for the first time to estimate the relative contributions to total respiration of the different respiratory electron transport branches under different external conditions. Especially adding fructose to the growth medium led to a dramatic enhancement of in vitro cytochrome c oxidation and in vivo respiratory activity without significantly influencing gene expression.  (+info)

High-affinity vanadate transport system in the cyanobacterium Anabaena variabilis ATCC 29413. (2/21)

High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 x 10(-9) M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri.  (+info)

Cross-functionality of nitrogenase components NifH1 and VnfH in Anabaena variabilis. (3/21)

Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.  (+info)

Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. (4/21)

Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamate and ammonia. While PALs are common in terrestrial plants where they catalyze the first committed step in the formation of phenylpropanoids, only a few prokaryotic PALs have been identified to date. Here we describe for the first time PALs from cyanobacteria, in particular, Anabaena variabilis ATCC 29413 and Nostoc punctiforme ATCC 29133, identified by screening the genome sequences of these organisms for members of the aromatic amino acid ammonia lyase family. Both PAL genes associate with secondary metabolite biosynthetic gene clusters as observed for other eubacterial PAL genes. In comparison to eukaryotic homologues, the cyanobacterial PALs are 20% smaller in size but share similar substrate selectivity and kinetic activity toward L-phenylalanine over L-tyrosine. Structure elucidation by protein X-ray crystallography confirmed that the two cyanobacterial PALs are similar in tertiary and quatenary structure to plant and yeast PALs as well as the mechanistically related histidine ammonia lyases.  (+info)

Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen. (5/21)

 (+info)

Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. (6/21)

 (+info)

High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. (7/21)

Controlling the light energy and major nutrients is important for high cell density culture of cyanobacterial cells. The growth phase of Anabaena variabilis can be divided into an exponential growth phase and a deceleration phase. In this study, the cell growth in the deceleration phase showed a linear growth pattern. Both the period of the exponential growth phase and the average cell growth rate in the deceleration phase increased by controlling the light intensity. To control the light intensity, the specific irradiation rate was maintained above 10 micromol/s/g dry cell by increasing the incident light intensity stepwise. The final cell density increased by controlling the nutrient supply. For the control of the nutrient supply, nitrate, phosphate, and sulfate were intermittently added based on the growth yield, along with the combined control of light intensity and nutrient concentration. Under these control conditions, both final cell concentration and cell productivity increased, to 8.2 g/l and 1.9 g/l/day, respectively.  (+info)

Regulation of fructose transport and its effect on fructose toxicity in Anabaena spp. (8/21)

 (+info)