Exposure of cryptic epitopes on transthyretin only in amyloid and in amyloidogenic mutants. (9/5562)

The structural requirements for generation of amyloid from the plasma protein transthyretin (TTR) are not known, although it is assumed that TTR is partly misfolded in amyloid. In a search for structural determinants important for amyloid formation, we generated a TTR mutant with high potential to form amyloid. We demonstrated that the mutant represents an intermediate in a series of conformational changes leading to amyloid. Two monoclonal antibodies were generated against this mutant; each displayed affinity to ex vivo TTR and TTR mutants with amyloidogenic folding but not to wild-type TTR or mutants exhibiting the wild-type fold. Two cryptic epitopes were mapped to a domain of TTR, where most mutations associated with amyloidosis occur and which we propose is displaced at the initial phase of amyloid formation, opening up new surfaces necessary for autoaggregation of TTR monomers. The results provide direct biochemical evidence for structural changes in an amyloidogenic intermediate of TTR.  (+info)

Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. (10/5562)

Autosomal dominant forms of familial Alzheimer's disease (FAD) are associated with increased production of the amyloid beta peptide, Abeta42, which is derived from the amyloid protein precursor (APP). In FAD, as well as in sporadic forms of the illness, Abeta peptides accumulate abnormally in the brain in the form of amyloid plaques. Here, we show that overexpression of FAD(717V-->F)-mutant human APP in neurons of transgenic mice decreases the density of presynaptic terminals and neurons well before these mice develop amyloid plaques. Electrophysiological recordings from the hippocampus revealed prominent deficits in synaptic transmission, which also preceded amyloid deposition by several months. Although in young mice, functional and structural neuronal deficits were of similar magnitude, functional deficits became predominant with advancing age. Increased Abeta production in the context of decreased overall APP expression, achieved by addition of the Swedish FAD mutation to the APP transgene in a second line of mice, further increased synaptic transmission deficits in young APP mice without plaques. These results suggest a neurotoxic effect of Abeta that is independent of plaque formation.  (+info)

Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. (11/5562)

The epsilon4 allele of apolipoprotein E (apo E) is associated with an increased risk for developing Alzheimer's disease (AD). This may be due to interactions between apo E and the amyloid-beta protein (Abeta). To assess the effects of human apo E isoforms on Abeta deposition in vivo, we bred apo E3 and apo E4 hemizygous (+/-) transgenic mice expressing apo E by astrocytes to mice homozygous (+/+) for a mutant amyloid precursor protein (APPV717F) transgene that develop age-dependent AD neuropathology. All mice were on a mouse apo E null (-/-) background. By nine months of age, APPV717F+/-, apo E-/- mice had developed Abeta deposition, and, as reported previously, the quantity of Abeta deposits was significantly less than that seen in APPV717F+/- mice expressing mouse apo E. In contrast to effects of mouse apo E, similar levels of human apo E3 and apo E4 markedly suppressed early Abeta deposition at nine months of age in APPV717F+/- transgenic mice, even when compared with mice lacking apo E. These findings suggest that human apo E isoforms decrease Abeta aggregation or increase Abeta clearance relative to an environment in which mouse apo E or no apo E is present. The results may have important implications for understanding mechanisms underlying the link between apo E and AD.  (+info)

Calpain inhibitor I increases beta-amyloid peptide production by inhibiting the degradation of the substrate of gamma-secretase. Evidence that substrate availability limits beta-amyloid peptide production. (12/5562)

The calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) has been reported to have complex effects on the production of the beta-amyloid peptide (Abeta). In this study, the effects of ALLN on the processing of the amyloid precursor protein (APP) to Abeta were examined in 293 cells expressing APP or the C-terminal 100 amino acids of APP (C100). In cells expressing APP or low levels of C100, ALLN increased Abeta40 and Abeta42 secretion at low concentrations, decreased Abeta40 and Abeta42 secretion at high concentrations, and increased cellular levels of C100 in a concentration-dependent manner by inhibiting C100 degradation. Low concentrations of ALLN increased Abeta42 secretion more dramatically than Abeta40 secretion. ALLN treatment of cells expressing high levels of C100 did not alter cellular C100 levels and inhibited Abeta40 and Abeta42 secretion with similar IC50 values. These results suggest that C100 can be processed both by gamma-secretase and by a degradation pathway that is inhibited by low concentrations of ALLN. The data are consistent with inhibition of gamma-secretase by high concentrations of ALLN but do not support previous assertions that ALLN is a selective inhibitor of the gamma-secretase producing Abeta40. Rather, Abeta42 secretion may be more dependent on C100 substrate concentration than Abeta40 secretion.  (+info)

Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides. (13/5562)

Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  (+info)

In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. (14/5562)

We have applied in situ atomic force microscopy to directly observe the aggregation of Alzheimer's beta-amyloid peptide (Abeta) in contact with two model solid surfaces: hydrophilic mica and hydrophobic graphite. The time course of aggregation was followed by continuous imaging of surfaces remaining in contact with 10-500 microM solutions of Abeta in PBS (pH 7.4). Visualization of fragile nanoscale aggregates of Abeta was made possible by the application of a tapping mode of imaging, which minimizes the lateral forces between the probe tip and the sample. The size and the shape of Abeta aggregates, as well as the kinetics of their formation, exhibited pronounced dependence on the physicochemical nature of the surface. On hydrophilic mica, Abeta formed particulate, pseudomicellar aggregates, which at higher Abeta concentration had the tendency to form linear assemblies, reminiscent of protofibrillar species described recently in the literature. In contrast, on hydrophobic graphite Abeta formed uniform, elongated sheets. The dimensions of those sheets were consistent with the dimensions of beta-sheets with extended peptide chains perpendicular to the long axis of the aggregate. The sheets of Abeta were oriented along three directions at 120 degrees to each other, resembling the crystallographic symmetry of a graphite surface. Such substrate-templated self-assembly may be the distinguishing feature of beta-sheets in comparison with alpha-helices. These studies show that in situ atomic force microscopy enables direct assessment of amyloid aggregation in physiological fluids and suggest that Abeta fibril formation may be driven by interactions at the interface of aqueous solutions and hydrophobic substrates, as occurs in membranes and lipoprotein particles in vivo.  (+info)

Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. (15/5562)

We have identified a novel beta amyloid precursor protein (betaAPP) mutation (V715M-betaAPP770) that cosegregates with early-onset Alzheimer's disease (AD) in a pedigree. Unlike other familial AD-linked betaAPP mutations reported to date, overexpression of V715M-betaAPP in human HEK293 cells and murine neurons reduces total Abeta production and increases the recovery of the physiologically secreted product, APPalpha. V715M-betaAPP significantly reduces Abeta40 secretion without affecting Abeta42 production in HEK293 cells. However, a marked increase in N-terminally truncated Abeta ending at position 42 (x-42Abeta) is observed, whereas its counterpart x-40Abeta is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Abeta but may be caused by increased production of truncated forms of Abeta ending at the 42 position.  (+info)

Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. (16/5562)

Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer's disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer's disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer's disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid beta-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.  (+info)