cAMP-mediated catabolite repression and electrochemical potential-dependent production of an extracellular amylase in Vibrio alginolyticus. (9/1858)

Vibrio alginolyticus, a halophilic marine bacterium, produced an extracellular amylase with a molecular mass of approximately 56,000, and the amylase appeared to be subject to catabolite repression mediated by cAMP. The production of amylase at pH 6.5, at which the respiratory chain-linked H+ pump functions, was inhibited about 75% at 24 hours following the addition of 2 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP), while the production at pH 8.5, at which the respiratory chain-linked Na+ pump functions, was only slightly inhibited by the addition of 2 microM CCCP. In contrast, the production of amylase in a mutant bacterium defective in the Na+ pump was almost completely inhibited even at pH 8.5 as well as pH 6.5 by the addition of 2 microM CCCP.  (+info)

Involvement of RhoA and its interaction with protein kinase C and Src in CCK-stimulated pancreatic acini. (10/1858)

We evaluated intracellular pathways responsible for the activation of the small GTP-binding protein Rho p21 in rat pancreatic acini. Intact acini were incubated with or without CCK and carbachol, and Triton X-100-soluble and crude microsomes were used for Western immunoblotting. When a RhoA-specific antibody was used, a single band at the location of 21 kDa was detected. CCK (10 pM-10 nM) and carbachol (0.1-100 microM) dose dependently increased the amount of immunodetectable RhoA with a peak increase occurring at 3 min. High-affinity CCK-A-receptor agonists JMV-180 and CCK-OPE (1-1,000 nM) did not increase the intensities of the RhoA band, suggesting that stimulation of RhoA is mediated by the low-affinity CCK-A receptor. Although an increase in RhoA did not require the presence of extracellular Ca2+, the intracellular Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM abolished the appearance of the RhoA band in response to CCK and carbachol. The Gq protein inhibitor G protein antagonist-2A (10 microM) and the phospholipase C (PLC) inhibitor U-73122 (10 microM) markedly reduced RhoA bands in response to CCK. The protein kinase C (PKC) activator phorbol ester (10-1,000 nM) dose dependently increased the intensities of the RhoA band, which were inhibited by the PKC inhibitor K-252a (1 microM). The pp60(c-src) inhibitor herbimycin A (6 microM) inhibited the RhoA band in response to CCK, whereas the calmodulin inhibitor W-7 (100 microM) and the phosphoinositide 3-kinase inhibitor wortmannin (6 microM) had no effect. RhoA was immunoprecipitated with Src, suggesting association of RhoA with Src. Increases in mass of this complex were observed with CCK stimulation. In permeabilized acini, the Rho inhibitor Clostridium botulinum C3 exoenzyme dose dependently inhibited amylase secretion evoked by a Ca2+ concentration with an IC50 of C3 exoenzyme at 1 ng/ml. We concluded that the small GTP-binding protein RhoA p21 exists in pancreatic acini and appears to be involved in the mediation of pancreatic enzyme secretion evoked by CCK and carbachol. RhoA pathways are involved in the activation of PKC and Src cascades via Gq protein and PLC.  (+info)

Interactions of Streptococcus mutans fimbria-associated surface proteins with salivary components. (11/1858)

Streptococcus mutans has been implicated as the major causative agent of human dental caries. S. mutans binds to saliva-coated tooth surfaces, and previous studies suggested that fimbriae may play a role in the initial bacterial adherence to salivary components. The objectives of this study were to establish the ability of an S. mutans fimbria preparation to bind to saliva-coated surfaces and determine the specific salivary components that facilitate binding with fimbriae. Enzyme-linked immunosorbent assay (ELISA) established that the S. mutans fimbria preparation bound to components of whole saliva. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot techniques were used to separate components of whole saliva and determine fimbria binding. SDS-PAGE separated 15 major protein bands from saliva samples, and Western blot analysis indicated significant binding of the S. mutans fimbria preparation to a 52-kDa salivary protein. The major fimbria-binding salivary protein was isolated by preparative electrophoresis. The ability of the S. mutans fimbria preparation to bind to the purified salivary protein was confirmed by Western blot analysis and ELISA. Incubation of the purified salivary protein with the S. mutans fimbria preparation significantly neutralized binding of the salivary protein-fimbria complex to saliva-coated surfaces. The salivary protein, whole saliva, and commercial amylase reacted similarly with antiamylase antibody in immunoblots. A purified 65-kDa fimbrial protein was demonstrated to bind to both saliva and amylase. These data indicated that the S. mutans fimbria preparation and a purified fimbrial protein bound to whole-saliva-coated surfaces and that amylase is the major salivary component involved in the binding.  (+info)

Interaction of islet hormones with cholecystokinin octapeptide-evoked secretory responses in the isolated pancreas of normal and diabetic rats. (12/1858)

This study investigates the effects of the islet hormones, insulin (Ins), glucagon (Glu) and somatostatin (Som) with cholecystokinin octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca2+]i and their pattern of distribution in the isolated pancreas of normal and diabetic rats. Ins and Glu evoked small increases in amylase output from pancreatic segments compared with a much enhanced effect of CCK-8. In contrast, Som induced a biphasic response comprising an initial decrease followed by a secondary increase and this biphasic response may be dependent upon the concentration. Combining the islet hormones with CCK-8 resulted in marked potentiation in amylase output compared with either CCK-8 alone or the individual hormone. Genistein and tyrphostin A25, the tyrosine kinase inhibitors, evoked a small decrease in amylase output from pancreatic segments. They had no effect on the CCK-8-evoked secretory response but markedly inhibited the potentiation of the islet hormones with CCK-8. In pancreatic acini and acinar cells Ins, Glu and Som individually evoked small increases in amylase output compared with a much larger response with CCK-8. When the islet hormones were combined with CCK-8 there was no potentiation of amylase output. Similarly, when rats were rendered diabetic by prior treatment with streptozotocin Ins, Glu and Som failed to potentiate the secretory response of CCK-8. In fura-2-loaded pancreatic acinar cells Ins or Glu evoked small increases in [Ca2+]i compared with a much larger elevation with CCK-8. Ins, Glu and Som each enhanced the CCK-8-evoked [Ca2+]i. Genistein elicited a decrease in [Ca2+]i both in the absence and presence of the islet hormones. It also decreased the elevation in [Ca2+]i resulting from the combined presence of CCK-8 with either Ins or Glu but it had no effect on CCK-8 in combination with Som. In pancreatic acinar cells from diabetic rat Ins, Glu and Som had no detectable effect on CCK-8-evoked elevation in [Ca2+]i compared with the response obtained with CCK-8 alone. CCK-8-immunopositive cells were distributed around the walls of blood vessels, numerous Ins-positive cells in the central and peripheral parts of the islets of Langerhans, Glu-immunoreactive cells in the periphery of islets and Som-positive cells in the outer part of the islets. During diabetes, the number of CCK-immunopositive cells remained unchanged whereas the number of Ins-positive cells decreased coupled with an increase in the number of Glu-positive cells. The results indicate that both tyrosine kinase and cellular Ca2+ seem to be the intracellular mediators involved with the enhanced secretory responses obtained with a combination of the islet hormones with CCK-8. Moreover, the presence of viable pancreatic islets of Langerhans seems to be associated with the potentiation of the islet hormones with CCK-8.  (+info)

Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. (13/1858)

Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  (+info)

Stable, inducible thermoacidophilic alpha-amylase from Bacillus acidocaldarius. (14/1858)

Bacillus acidocaldarius Agnano 101 produces an inducible thermoacidophilic alpha-amylase. The enzyme production occurs during the stationary phase of growth in the presence of compounds with alpha-1,4-glucosidic linkages. The enzymatic activity is both present in the culture medium and associated with the cells; the enzymes purified from both sources show identical molecular and catalytic properties. The purified amylase has a single polypeptide chain of molecular weight 68,000 and behaves like an alpha-amylase with affinity constants for starch and related substances of 0.8 to 0.9 mg/ml. The pH and temperature optima for activity are 3.5 and 75degreesC, respectively. The amylase is stable at acidic pH (below 4.5). Its thermal stability is strictly dependent upon protein concentration; the half-life at 60degreesC of the amylase in a 70-mug/ml solution is about 5 days.  (+info)

Secretion of old versus new exportable protein in rat parotid slics. Control by neurotransmitters. (15/1858)

The possibility that old and new secretory granules do not mix and that older exportable protein can be secreted preferentially was tested on parotid gland in vitro. Slices from fasted animals were pulse labeled for 3 min with L-[3H]leucine. Subcellular fractionstion showed that after 1 90-min chase period, the formation of new labeled secretory granules was mostly completed. The ratio of label in secretory granules to label in microsomes increased 250-fold during the period 5--90 min postpulse. After the 90-min chase, a submaximal rate of secretion was initiated by adding a low concentration of isoproterenol to the slices. Preferential secretion of old unlabeled exportable protein was evident from the finding that the percent of total amylase secreted was 3.5-fold greater than the percent of labeled protein secreted. Preferential secretion of old unlabeled exportable amylase was undiminished even when the chase period before addition of isoproterenol was extended to 240 min. Such long chase incubations were still meaningful due to the fact that the spontaneous rat of amylase release and radioactive protein release from the slices was negligibly low. A high isoproterenol concentration added to the slices after a 90-min chase produced the following results. An initial phase of preferential secretion of old unlabeled protein was soon replaced by secretion of a random mixture of new and old exportable protein. Electron micrographs indicated that high rates of secretion involved sequential fusion of secretory granules so that the lumen extended deep into the cell where the new labeled granules were presumably located. At low rates of secretion, the lumen showed no such deep extensions. Experiments were also conducted on slices from glands which had been largely depleted of old granules by prior injection of isoproterenol into the animals. Secretion of labeled protein from such slices stopped with the export of 80% of the labeled protein. This finding indicates that about 20% of the radioactive protein is cellular nonexportable protein and that the slices are capable of exporting the entire amount of secretory protein which was symthesized in vitrol. In addition to the beta-adrenergic receptor which mediates protein secretion, the parotid acinar cell also possesses an alpha-adrenergic and a cholinergic receptor both of which cause K+ release, vacuole formation, and water secretion. Activation of either of the latter two receptors in conjunction with the beta-adrenergic receptor increased randomization of the protein secreted. It is concluded that in the rat parotid acinar cell there is little spontaneous mixing between old granules near the luminal cell membrane and new granules coming up behind from the Golgi complex. The neurotransmitters which induce secretion produce the observed randomization.  (+info)

A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. (16/1858)

Misfolding or unfolding of polypeptides can occur as a consequence of environmental stress and spontaneous mutation. The abundance of general chaperones and proteases suggests that cells distinguish between proteins that can be refolded and "hopeless" cases fated to enter the proteolytic pathway. The mechanisms controlling this key metabolic decision are not well understood. We show here that the widely conserved heat shock protein DegP (HtrA) has both general molecular chaperone and proteolytic activities. The chaperone function dominates at low temperatures, while the proteolytic activity is present at elevated temperatures. These results show that a single cellular factor can switch between two key pathways, controlling protein stability and turnover. Implications of this finding for intracellular protein metabolism are discussed.  (+info)