Structure-activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. (65/270)

The anuran (frogs and toads) skin is a rich source of antimicrobial peptides that can be developed therapeutically. We searched the skin secretions of Korean Rana esculenta for antimicrobial peptides, and isolated two cationic peptides with antimicrobial activity and little hemolytic activity: a 46-residue peptide of the esculentin-1 family and a 24-residue peptide of the brevinin-1 family. Their sequences showed some differences from the esculentins-1 and brevinins-1 of European Rana esculenta, indicating that sequence diversification of anuran skin antimicrobial peptides can arise from differences in habitat as well as from species differences. The 46-residue peptide named esculentin-1c had broad antimicrobial activity, while the 24-residue peptide named brevinin-1Ed exhibited limited activity. The solution structure of brevinin-1Ed was in good agreement with that of other brevinin-1-like peptides, with an amphipathic alpha-helix spanning residues 3-20, stabilized in membrane-mimetic environments. The weak bioactivity of brevinin-1Ed was attributable to the unusual presence of an anionic amino acid in the middle of the helical hydrophilic face. This report contributes to world-wide investigations of the structure-activity relationships and evolutional diversification of anuran-skin antimicrobial peptides.  (+info)

Surface behaviour and peptide-lipid interactions of the antibiotic peptides, Maculatin and Citropin. (66/270)

Surface behaviour of Maculatin 1.1 and Citropin 1.1 antibiotic peptides have been studied using the Langmuir monolayer technique in order to understand the peptide-membrane interaction proposed as critical for cellular lysis. Both peptides have a spontaneous adsorption at the air-water interface, reaching surface potentials similar to those obtained by direct spreading. Collapse pressures (Pi(c), stability to lateral compression), molecular areas at maximal packing and surface potentials (DeltaV) obtained from compression isotherms of both pure peptide monolayers are characteristic of peptides adopting mainly alpha-helical structure at the interface. The stability of Maculatin monolayers depended on the subphase and increased when pH was raised. In an alkaline environment, Maculatin exhibits a molecular reorganization showing a reproducible discontinuity in the Pi-A compression isotherm. Both peptides in lipid films with the zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) showed an immiscible behaviour at all lipid-peptide proportions studied. By contrast, in films with the anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG), the peptides showed miscible behaviour when the peptides represented less than 50% of total surface area. Additional penetration experiments also demonstrated that both peptides better interact with POPG compared with POPC monolayers. This lipid preference is discussed as a possible explanation of their antibiotic properties.  (+info)

Regulation of the coupling to different G proteins of rat corticotropin-releasing factor receptor type 1 in human embryonic kidney 293 cells. (67/270)

The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  (+info)

Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment. (68/270)

The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized. In the present study, agonist-induced internalization of CRFR1 in HEK293 cells was visualized by confocal microscopy and quantified using the radioligand 125I-labelled sauvagine. Recruitment of beta-arrestin 1 in response to receptor activation was demonstrated by confocal microscopy. The extent of 125I-labelled sauvagine stimulated internalization was significantly impaired by sucrose, indicating the involvement of clathrin-coated pits. No effect on the extent of internalization was observed in the presence of the second messenger dependent kinase inhibitors H-89 and staurosporine, indicating that cAMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment.  (+info)

Synergism of Rana catesbeiana ribonuclease and IFN-gamma triggers distinct death machineries in different human cancer cells. (69/270)

Rana catesbeiana ribonuclease (RC-RNase) possesses tumor-specific cytotoxicity, which can be synergized by IFN-gamma. However, it is unclear how RC-RNase and RC-RNase/IFN-gamma induce cell death. In this study, we use substrate cleavage assays to systematically investigate RC-RNase- and RC-RNase/IFN-gamma-induced caspase activation in HL-60, MCF-7, and SK-Hep-1 cells. We find that RC-RNase and RC-RNase/IFN-gamma induce mitochondria-mediated caspase activation in HL-60 and MCF-7 cells but not in SK-Hep-1 cells, although death of SK-Hep-1 cells is closely related to mitochondrial disruptions. Our findings provide evidence that RC-RNase and RC-RNase/IFN-gamma can kill different cancer cells by distinct mechanisms. Compared with onconase, RC-RNase seems to harbor a more specific anti-cancer activity.  (+info)

Biosynthesis of a D-amino acid in peptide linkage by an enzyme from frog skin secretions. (70/270)

d-amino acids are present in some peptides from amphibian skin. These residues are derived from the corresponding L-amino acids present in the respective precursors. From skin secretions of Bombinae, we have isolated an enzyme that catalyzes the isomerization of an L-Ile in position 2 of a model peptide to D-allo-Ile. In the course of this reaction, which proceeds without the addition of a cofactor, radioactivity from tritiated water is incorporated into the second position of the product. The amino acid sequence of this isomerase could be deduced from cloned cDNA and genomic DNA. After expression of this cDNA in oocytes of Xenopus laevis, isomerase activity could be detected. Polypeptides related to the frog skin enzyme are present in several vertebrate species, including humans.  (+info)

The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. (71/270)

Most of HIV-1 infections are acquired through sexual contact. In the absence of a preventive vaccine, the development of topical microbicides that can block infection at the mucosal tissues is needed. Dermaseptin S4 (DS4) is an antimicrobial peptide derived from amphibian skin, which displays a broad spectrum of activity against bacteria, yeast, filamentous fungi, and herpes simplex virus type 1. We show here that DS4 inhibits cell-free and cell-associated HIV-1 infection of P4-CCR5 indicator cells and human primary T lymphocytes. The peptide is effective against R5 and X4 primary isolates and laboratory-adapted strains of HIV-1. Its activity is directed against HIV-1 particles by disrupting the virion integrity. Increasing the number of DS4-positive charges reduced cytotoxicity without affecting the antiviral activity. The modified DS4 inhibited HIV-1 capture by dendritic cells and subsequent transmission to CD4(+) T cells, as well as HIV-1 binding on HEC-1 endometrial cells and transcytosis through a tight epithelial monolayer.  (+info)

Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. (72/270)

To investigate the importance of increased hydrophobicity at the amino end of antimicrobial peptides, a dermaseptin derivative was used as a template for a systematic acylation study. Through a gradual increase of the acyl moiety chain length, hydrophobicity was monitored and further modulated by acyl conversion to aminoacyl. The chain lengths of the acyl derivatives correlated with a gradual increase in the peptide's global hydrophobicity and stabilization of its helical structure. The effect on cytolytic properties, however, fluctuated for different cells. Whereas acylation gradually enhanced hemolysis of human red blood cells and antiprotozoan activity against Leishmania major, bacteria displayed a more complex behavior. The gram-positive organism Staphylococcus aureus was most sensitive to intermediate acyl chains, while longer acyls gradually led to a total loss of activity. All acyl derivatives were detrimental to activity against Escherichia coli, namely, but not solely, because of peptide aggregation. Although aminoacyl derivatives behaved essentially similarly to the nonaminated acyls, they displayed reduced hydrophobicity, and consequently, the long-chain acyls enhanced activity against all microorganisms (e.g., by up to 12-fold for the aminolauryl derivative) but were significantly less hemolytic than their acyl counterparts. Acylation also enhanced bactericidal kinetics and peptide resistance to plasma proteases. The similarities and differences upon acylation of MSI-78 and LL37 are presented and discussed. Overall, the data suggest an approach that can be used to enhance the potencies of acylated short antimicrobial peptides by preventing hydrophobic interactions that lead to self-assembly in solution and, thus, to inefficacy against cell wall-containing target cells.  (+info)