5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. (57/2280)

Exercise is known to increase insulin sensitivity and is an effective form of treatment for the hyperglycemia observed in type 2 diabetes. Activation of 5'-AMP-activated protein kinase (AMPK) by 5-aminoimidazole-4-carboxamide riboside (AICAR), exercise, or electrically stimulated contraction leads to increased glucose transport in skeletal muscle. Here we report the first evidence of a direct interaction between AMPK and the most upstream component of the insulin-signaling cascade, insulin receptor substrate-1 (IRS-1). We find that AMPK rapidly phosphorylates IRS-1 on Ser-789 in cell-free assays as well as in mouse C2C12 myotubes incubated with AICAR. In the C2C12 myotubes activation of AMPK by AICAR matched the phosphorylation of IRS-1 on Ser-789. This phosphorylation correlates with a 65% increase in insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity in C2C12 myotubes preincubated with AICAR. The binding of phosphatidylinositol 3-kinase to IRS-1 was not affected by AICAR. These results demonstrate the existence of an interaction between AMPK and early insulin signaling that could be of importance to our understanding of the potentiating effects of exercise on insulin signaling.  (+info)

Role of AMP-activated protein kinase in mechanism of metformin action. (58/2280)

Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.  (+info)

AMP-activated protein kinase activation prevents denervation-induced decline in gastrocnemius GLUT-4. (59/2280)

This study was designed to determine whether the reductions in GLUT-4 seen in 3-day-denervated muscles can be prevented through chemical activation of 5'-AMP-activated protein kinase (AMPK). Muscle AMPK can be chemically activated in rats using subcutaneous injections with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). In this study, the tibial nerve was sectioned on one side; the other was sham operated but without nerve section. Acute injections of AICAR resulted in significantly increased AMPK activity in denervated gastrocnemius but not soleus muscles. Acetyl-CoA carboxylase activity, a reporter of AMPK activation, declined in both gastrocnemius and soleus in both denervated and contralateral muscles. Three days after denervation, GLUT-4 levels were significantly decreased by approximately 40% in gastrocnemius muscles and by approximately 30% in soleus muscles. When rats were injected with AICAR (1 mg/g body wt) for 3 days, the decline in GLUT-4 levels was prevented in denervated gastrocnemius muscles but not in denervated soleus muscles. The extent of denervation-induced muscle atrophy was similar in AICAR-treated vs. saline-treated rats. These studies provide evidence that some effects of denervation may be prevented by chemical activation of the appropriate signaling pathways.  (+info)

The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. (60/2280)

The objective of this study was to define the relationship among AMP-activated protein kinase (AMPK) activity, AMP concentration ([AMP]), and [ATP] in perfused rat hearts. Bromo-octanoate, an inhibitor of beta-oxidation, and amino-oxyacetate, an inhibitor of the malate-aspartate shuttle, were used to modify substrate flux and thus increase cytosolic [AMP]. Cytosolic [AMP] was calculated using metabolites measured by (31)P NMR spectroscopy. Rat hearts were perfused with Krebs-Henseleit solution containing glucose and either no inhibitor, the inhibitors, or the inhibitors plus butyrate, a substrate that bypasses the metabolic blocks. In this way, [AMP] changed from 0.2 to 27.9 microm, and [ATP] varied between 11.7 and 6.8 mm. AMPK activity ranged from 7 to 60 pmol.min(-1).microg of protein(-1). The half-maximal AMPK activation (A(0.5)) was 1.8 +/- 0.3 microm AMP. Measurements in vitro have reported similar AMPK A(0.5) at 0.2 mm ATP, but found that A(0.5) increased 10-20-fold at 4 mm ATP. The low A(0.5) of this study despite a high [ATP] suggests that in vivo the ATP antagonism of AMPK activation is reduced, and/or other factors besides AMP activate AMPK in the heart.  (+info)

Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. (61/2280)

BACKGROUND: We recently reported a mutation in the PRKAG2 gene to be responsible for a familial syndrome of ventricular preexcitation, atrial fibrillation, conduction defects, and cardiac hypertrophy. We now report a novel mutation in PRKAG2 causing Wolff-Parkinson-White syndrome and conduction system disease with onset in childhood and the absence of cardiac hypertrophy. METHODS AND RESULTS: DNA was extracted from white blood cells obtained from family members. PRKAG2 exons were amplified by polymerase chain reaction and were screened for mutations by direct sequencing. The genomic organization of the PRKAG2 gene was determined using inter-exon long-range polymerase chain reaction for cDNA sequence not available in the genome database. A missense mutation, Arg531Gly, was identified in all affected individuals but was absent in 150 unrelated individuals. The PRKAG2 gene was determined to consist of 16 exons and is at least 280 kb in size. CONCLUSIONS: We identified a novel mutation (Arg531Gly) in the gamma-2 regulatory subunit (PRKAG2) of AMP-activated protein kinase (AMPK) to be responsible for a syndrome associated with ventricular preexcitation and early onset of atrial fibrillation and conduction disease. These observations confirm an important functional role of AMPK in the regulation of ion channels specific to cardiac tissue. The identification of the cardiac ion channel(s) serving as substrate for AMPK not only would provide insight into the molecular basis of atrial fibrillation and heart block but also may suggest targets for the development of more specific therapy for these common rhythm disturbances.  (+info)

Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. (62/2280)

Apoptosis has been observed in vascular cells, nerve, and myocardium of diabetic humans and experimental animals, although whether it contributes to or is a marker of complications in these tissues is unclear. Previous studies have shown that incubation of human umbilical vein endothelial cells (HUVECs) with 30 vs. 5 mmol/l glucose for 72 h causes a significant increase in apoptosis, possibly related to an increase in oxidative stress. We report here that this increase in apoptosis (assessed morphologically by TdT-mediated dUTP nick- end labeling staining) is preceded (24 h of incubation) by inhibition of fatty acid oxidation, by increases in diacylglycerol synthesis, the concentration of malonyl CoA, and caspase-3 activity, and by decreases in mitochondrial membrane potential and cellular ATP content. In addition, the phosphorylation of Akt in the presence of 150 microU/ml insulin was impaired. No increases in ceramide content or its de novo synthesis were observed. AMP-activated protein kinase (AMPK) activity was not diminished; however, incubation with the AMPK activator 5-aminoimidazole-4-carboxamide-riboside increased AMPK activity twofold and completely prevented all of these changes. Likewise, expression of a constitutively active AMPK in HUVEC prevented the increase in caspase-3 activity. The results indicate that alterations in fatty-acid metabolism, impaired Akt activation by insulin, and increased caspase-3 activity precede visible evidence of apoptosis in HUVEC incubated in a hyperglycemic medium. They also suggest that AMPK could play an important role in protecting the endothelial cell against the adverse effects of sustained hyperglycemia.  (+info)

Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. (63/2280)

5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose transport) by AICA-riboside in resting muscle is not known. Thus, we have altered muscle glycogen levels in rats by a combination of swimming exercise and diet and investigated the effects of AICA-riboside in the perfused rat hindlimb muscle. Two groups of rats, one with super-compensated muscle glycogen content (approximately 200-300% of normal; high glycogen [HG]) and one with moderately lowered muscle glycogen content (approximately 80% of normal; low glycogen [LG]), were generated. In both groups, the degree of activation of the alpha2 isoform of AMPK by AICA-riboside depended on muscle type (white gastrocnemius >> red gastrocnemius > soleus). Basal and AICA-riboside-induced alpha2-AMPK activity were markedly lowered in the HG group (approximately 50%) compared with the LG group. Muscle 2-deoxyglucose uptake was also increased and glycogen synthase activity decreased by AICA-riboside. Especially in white gastrocnemius, these effects, as well as the absolute activity levels of AMPK-alpha2, were markedly reduced in the HG group compared with the LG group. The inactivation of glycogen synthase by AICA-riboside was accompanied by decreased gel mobility and was eliminated by protein phosphatase treatment. We conclude that acute AICA-riboside treatment leads to phosphorylation and deactivation of glycogen synthase in skeletal muscle. Although the data do not exclude a role of other kinases/phosphatases, they suggest that glycogen synthase may be a target for AMPK in vivo. Both basal and AICA-riboside-induced AMPK-alpha2 and glycogen synthase activities, as well as glucose transport, are depressed when the glycogen stores are plentiful. Because the glycogen level did not affect adenine nucleotide concentrations, our data suggest that glycogen may directly affect the activation state of AMPK in skeletal muscle.  (+info)

Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. (64/2280)

Mutations in PRKAG2, the gene for the gamma 2 regulatory subunit of AMP-activated protein kinase, cause cardiac hypertrophy and electrophysiologic abnormalities, particularly preexcitation (Wolff-Parkinson-White syndrome) and atrioventricular conduction block. To understand the mechanisms by which PRKAG2 defects cause disease, we defined novel mutations, characterized the associated cardiac histopathology, and studied the consequences of introducing these mutations into the yeast homologue of PRKAG2, Snf4. Although the cardiac pathology caused by PRKAG2 mutations Arg302Gln, Thr400Asn, and Asn488Ile include myocyte enlargement and minimal interstitial fibrosis, these mutations were not associated with myocyte and myofibrillar disarray, the pathognomonic features of hypertrophic cardiomyopathy caused by sarcomere protein mutations. Instead PRKAG2 mutations caused pronounced vacuole formation within myocytes. Several lines of evidence indicated these vacuoles were filled with glycogen-associated granules. Analyses of the effects of human PRKAG2 mutations on Snf1/Snf4 kinase function demonstrated constitutive activity, which could foster glycogen accumulation. Taken together, our data indicate that PRKAG2 mutations do not cause hypertrophic cardiomyopathy but rather lead to a novel myocardial metabolic storage disease, in which hypertrophy, ventricular pre-excitation and conduction system defects coexist.  (+info)