A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. (41/2280)

Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.  (+info)

Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. (42/2280)

BACKGROUND: The Wolff-Parkinson-White syndrome, with a prevalence in Western countries of 1.5 to 3.1 per 1000 persons, causes considerable morbidity and may cause sudden death. We identified two families in which the Wolff-Parkinson-White syndrome segregated as an autosomal dominant disorder. METHODS: We studied 70 members of the two families (57 in Family 1 and 13 in Family 2). The subjects underwent 12-lead electrocardiography and two-dimensional echocardiography. Genotyping mapped the gene responsible to 7q34-q36, a locus previously identified to be responsible for an inherited form of Wolff-Parkinson-White syndrome. Candidate genes were identified, sequenced, and analyzed in normal and affected family members to identify the disease-causing gene. RESULTS: A total of 31 members (23 from Family 1 and 8 from Family 2) had the Wolff-Parkinson-White syndrome. Affected members of both families had ventricular preexcitation with conduction abnormalities and cardiac hypertrophy. The maximal combined two-point lod score was 9.82 at a distance of 5 cM from marker D7S636, which confirmed the linkage of the gene in both families to 7q34-q36. Haplotype analysis indicated that there were no alleles in common in the two families at this locus, suggesting that the two families do not have a common founder. We identified a missense mutation in the gene that encodes the gamma2 regulatory subunit of AMP-activated protein kinase (PRKAG2). The mutation results in the substitution of glutamine for arginine at residue 302 in the protein. CONCLUSIONS: The identification of this genetic defect has important implications for elucidating the pathogenesis of ventricular preexcitation. Further understanding of how this molecular defect leads to supraventricular arrhythmias could influence the development of specific therapies for other forms of supraventricular arrhythmia.  (+info)

Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. (43/2280)

It is generally accepted that endothelial cells generate most of their ATP by anaerobic glycolysis and that very little ATP is derived from the oxidation of fatty acids or glucose. Previously, we have reported that, in cultured human umbilical vein endothelial cells (HUVECs), activation of AMP-activated protein kinase (AMPK) by the cell-permeable activator 5-aminoimidazole-4-carboximide riboside (AICAR) is associated with an increase in the oxidation of (3)H-palmitate. In the present study, experiments carried out with cultured HUVECs revealed the following: (1) AICAR-induced increases in palmitate oxidation during a 2-hour incubation are associated with a decrease in the concentration of malonyl coenzyme A (CoA) (an inhibitor of carnitine palmitoyl transferase 1), which temporally parallels the increase in AMPK activity and a decrease in the activity of acetyl CoA carboxylase (ACC). (2) AICAR does not stimulate either palmitate oxidation when carnitine is omitted from the medium or oxidation of the medium-chain fatty acid octanoate. (3) When intracellular lipid pools are prelabeled with (3)H-palmitate, the measured rate of palmitate oxidation is 3-fold higher, and in the presence of AICAR, it accounts for nearly 40% of calculated ATP generation. (4) Incubation of HUVECs in a glucose-free medium for 2 hours causes the same changes in AMPK, ACC, malonyl CoA, and palmitate oxidation as does AICAR. (5) Under all conditions studied, the contribution of glucose oxidation to ATP production is minimal. The results indicate that the AMPK-ACC-malonyl CoA-carnitine palmitoyl transferase 1 mechanism plays a key role in the physiological regulation of fatty acid oxidation in HUVECs. They also indicate that HUVECs oxidize fatty acids from both intracellular and extracellular sources, and that when this is taken into account, fatty acids can be a major substrate for ATP generation. Finally, they suggest that AMPK is likely to be a major factor in modulating the response of the endothelium to stresses that alter its energy state.  (+info)

Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. (44/2280)

Mutations in the HNF4alpha gene are responsible for type 1 maturity-onset diabetes of the young (MODY1), which is characterized by a defect in insulin secretion. Hepatocyte nuclear factor (HNF)-4alpha is a transcription factor that plays a critical role in the transcriptional regulation of genes involved in glucose metabolism in both hepatocytes and pancreatic beta-cells. Recent evidence has implicated AMP-activated protein kinase (AMPK) in the modulation of both insulin secretion by pancreatic beta-cells and the control of glucose-dependent gene expression in both hepatocytes and beta-cells. Therefore, the question could be raised as to whether AMPK plays a role in these processes by modulating HNF-4alpha function. In this study, we show that activation of AMPK by 5-amino-4-imidazolecarboxamide riboside (AICAR) in hepatocytes greatly diminished HNF-4alpha protein levels and consequently downregulates the expression of HNF-4alpha target genes. Quantitative evaluation of HNF-4alpha target gene expression revealed diminished mRNA levels for HNF-1alpha, GLUT2, L-type pyruvate kinase, aldolase B, apolipoprotein (apo)-B, and apoCIII. Our data clearly demonstrate that the MODY1/HNF-4alpha transcription factor is a novel target of AMPK in hepatocytes. Accordingly, it can be suggested that in pancreatic beta-cells, AMPK also acts by decreasing HNF-4alpha protein level, and therefore insulin secretion. Hence, the possible role of AMPK in the physiopathology of type 2 diabetes should be considered.  (+info)

Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. (45/2280)

Previous studies have shown that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMP-activated protein kinase, increases the rate of fatty acid oxidation in skeletal muscle of fed rats. The present study investigated the mechanism by which this occurs and, in particular, whether changes in the activity of malonyl-CoA decarboxylase (MCD) and the beta-isoform of acetyl-CoA carboxylase (ACC beta) are involved. In addition, the relationship between changes in fatty acid oxidation induced by AICAR and its effects on glucose uptake and metabolism was examined. In incubated soleus muscles isolated from fed rats, AICAR (2 mM) increased fatty acid oxidation (90%) and decreased ACC beta activity (40%) and malonyl-CoA concentration (50%); however, MCD activity was not significantly altered. In soleus muscles from overnight-fasted rats, AICAR decreased ACC beta activity (40%), as it did in fed rats; however, it had no effect on the already high rate of fatty acid oxidation or the low malonyl-CoA concentration. In keeping with its effect on fatty acid oxidation, AICAR decreased glucose oxidation by 44% in fed rats but did not decrease glucose oxidation in fasted rats. It had no effect on glucose oxidation when fatty acid oxidation was inhibited by 2-bromopalmitate. Surprisingly, AICAR did not significantly increase glucose uptake or assayable AMP-activated protein kinase activity in incubated soleus muscles from fed or fasted rats. These results indicate that, in incubated rat soleus muscle, 1) AICAR does not activate MCD or stimulate glucose uptake as it does in extensor digitorum longus and epitrochlearis muscles, 2) the ability of AICAR to increase fatty acid oxidation and diminish glucose oxidation and malonyl-CoA concentration is dependent on the nutritional status of the rat, and 3) the ability of AICAR to diminish assayable ACC activity is independent of nutritional state.  (+info)

An activating mutation in the gamma1 subunit of the AMP-activated protein kinase. (46/2280)

The AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. The gamma subunit is essential for enzyme activity by virtue of its binding to the C-terminus of the alpha subunit and appears to play some role in the determination of AMP sensitivity. We demonstrate that a gamma1R70Q mutation causes a marked increase in AMPK activity and renders it largely AMP-independent. This activation is associated with increased phosphorylation of the alpha subunit activation loop T172. These in vitro characteristics of AMPK are also reflected in increased intracellular phosphorylation of one of its major substrates, acetyl-CoA carboxylase. These data illustrate the importance of the gamma1 subunit in the regulation of AMPK and its modulation by AMP.  (+info)

Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. (47/2280)

Specific cellular stresses, including hyperosmotic stress, caused a dramatic but reversible cytoplasmic accumulation of the otherwise nuclear 45-kDa variant of the protein-tyrosine phosphatase TCPTP (TC45). In the cytoplasm, TC45 dephosphorylated the epidermal growth factor receptor and down-regulated the hyperosmotic stress-induced activation of the c-Jun N-terminal kinase. The hyperosmotic stress-induced nuclear exit of TC45 was not inhibited by leptomycin B, indicating that TC45 nuclear exit was independent of the exportin CRM-1. Moreover, hyperosmotic stress did not induce the cytoplasmic accumulation of a green fluorescent protein-TC45 fusion protein that was too large to diffuse across the nuclear pore. Our results indicate that TC45 nuclear exit may occur by passive diffusion and that cellular stress may induce the cytoplasmic accumulation of TC45 by inhibiting nuclear import. Neither p42(Erk2) nor the stress-activated c-Jun N-terminal kinase or p38 mediated the stress-induced redistribution of TC45. We found that only those stresses that stimulated the metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) induced the redistribution of TC45. In addition, specific pharmacological activation of the AMPK was sufficient to cause the accumulation of TC45 in the cytoplasm. Our studies indicate that specific stress-activated signaling pathways that involve the AMPK can alter the nucleocytoplasmic distribution of TC45 and thus regulate TC45 function in vivo.  (+info)

Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. (48/2280)

The yeast Snf1 kinase and its metazoan orthologues, the AMP-activated protein kinases, are activated in response to nutrient limitation. Activation requires the phosphorylation of a conserved threonine residue in the activation loop of the catalytic subunit. A phosphopeptide antibody was generated that specifically recognizes Snf1 protein that is phosphorylated in its activation loop on threonine 210. Using this reagent, we show that phosphorylation of threonine 210 correlates with Snf1 activity, since it is detected in cells subjected to glucose limitation but not in cells grown in abundant glucose. A Snf1 mutant completely lacking kinase activity was phosphorylated normally on threonine 210 in glucose-starved cells, eliminating the possibility that the threonine 210 modification is due to an autophosphorylation event. Cells lacking the Reg1 protein, a regulatory subunit for the Glc7 phosphatase, showed constitutive phosphorylation of Snf1 threonine 210. Exposure of cells to high concentrations of sodium chloride also induced phosphorylation of Snf1. Interestingly, Mig1, a downstream target of Snf1 kinase, is phosphorylated in glucose-stressed but not sodium-stressed cells. Finally, cells lacking the gamma subunit of the Snf1 kinase complex encoded by the SNF4 gene exhibited normal regulation of threonine 210 phosphorylation in response to glucose limitation but are unable to phosphorylate Mig1 efficiently. Our data indicate that activation of the Snf1 kinase complex involves two steps, one that requires a distinct upstream kinase and one that is mediated by the gamma subunit of the kinase itself.  (+info)