Generation of free radical intermediates from foreign compounds by neutrophil-derived oxidants. (73/181)

A large number of foreign compounds, including many drugs, industrial pollutants, and environmental chemicals, can be oxidized under appropriate conditions to potentially toxic free radical intermediates. We evaluated the ability of the oxidants produced by the neutrophil myeloperoxidase system to generate free radical intermediates from several such compounds. Sodium hypochlorite or hypochlorous acid produced by human peripheral blood neutrophils and trapped in the form of taurine chloramine were both found to be capable of producing free radicals from chlorpromazine, aminopyrine, and phenylhydrazine. These radical intermediates were demonstrated by visible light spectroscopy and by direct electron spin resonance (for the chlorpromazine and aminopyrine radicals) or by spin-trapping (for the phenyl radical generated from phenylhydrazine). Stable oxidants produced by the neutrophils (i.e., those present in the supernatants of stimulated neutrophils in the absence of added taurine) also were found to be capable of generating free radical intermediates. The production of the oxidants and the ability of neutrophil supernatants to generate these radicals were almost completely eliminated by sodium azide, a myeloperoxidase inhibitor. We suggest that the oxidation by neutrophils of certain chemical compounds to potentially damaging electrophilic free radical forms may represent a new metabolic pathway for these substances and could be important in the processes of drug toxicity and chemical carcinogenesis.  (+info)

Regulation of free cytosolic Ca2+ in the peptic and parietal cells of the rabbit gastric gland. (74/181)

Quin 2-loaded isolated rabbit gastric glands and purified peptic cells were used to measure free cytosolic Ca2+ ([Ca2+]i) during hormone stimulation. Rabbit gastric glands are composed of peptic and parietal cells with less than 1% endocrine cells. Although both cell types responded to the same hormones, they may be distinguished in terms of the source of Ca2+ bringing about the change in [Ca2+]i. Experiments were designed to assign changes in [Ca2+]i to either the peptic or parietal cells and to attempt to maintain these distinctions in the mixed cell population of gastric glands. It was shown that the peptide cholecystokinin octapeptide induced a rapid and transient increase in [Ca2+]i of isolated peptic cells. This signal was independent of medium Ca2+ and insensitive to the Ca2+ channel blockers La3+ and nifedipine. In gastric glands, the Ca2+ outdependent increase in (Ca2+)i (the secondary transient) was slower and dose dependently blocked by La3+ and nifedipine. This allowed [Ca2+]i levels in the physiologically more intact rabbit gastric glands to be dissected and correlated with fluorescence changes of quin 2 in either cell type. The transient increase in [Ca2+]i coincided with a burst of pepsin but not acid secretion. A subsequent slower phase of pepsin secretion took place while the cells restored near resting [Ca2+]i. Using a combination of the Ca2+ ionophore A23187 and the protein kinase C activating phorbol ester 12-O-tetra-decanoylphorbol 13-acetate, the hormone response pattern of pepsin secretion could be mimicked. The intracellular Ca2+ stores of the peptic cells in the gastric gland remained depleted of Ca2+ until specific antagonists were added. The reloading of intracellular stores required medium Ca2+ although [Ca2+]i was maintained at resting level during the entire reloading period. Hence, a specialized pathway of Ca2+ reloading is postulated.  (+info)

Evidence for a free radical mechanism of styrene-glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidase. (75/181)

We have proposed, using styrene as a model, a new mechanism for the formation of glutathione conjugates that is independent of epoxide formation but dependent on the oxidation of glutathione to a thiyl radical by peroxidases such as prostaglandin H synthase or horseradish peroxidase. The thiyl radical reacts with styrene to yield a carbon-centered radical which subsequently reacts with molecular oxygen to give the styrene-glutathione conjugate. We have used electron spin resonance spin trapping techniques to detect the proposed free radical intermediates. A styrene carbon-centered radical was trapped using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and t-nitrosobutane. The position of the carbon-centered radical was confirmed to be at carbon 7 by the use of specific 2H-labeled styrenes. The addition of the spin trap DMPO inhibited both the utilization of molecular oxygen and the formation of styrene-glutathione conjugates. Under anaerobic conditions additional styrene-glutathione conjugates were formed, one of which was identified by fast atom bombardment mass spectrometry as S-(2-phenyl)ethylglutathione. The glutathione thiyl radical intermediate was observed by spin trapping with DMPO. These results support the proposed free radical-mediated formation of styrene-glutathione conjugates by peroxidase enzymes.  (+info)

Inhibition of acid formation by epidermal growth factor in the isolated rabbit gastric glands. (76/181)

The effects of epidermal growth factor (EGF) on basal and stimulated (with histamine, dibutyryl cyclic AMP, and high concentrations of K+) acid formation have been studied in isolated glands from the rabbit gastric mucosa. The changes in the accumulation of [14C]aminopyrine [14C]AP have been used as an indirect measurement of acid production in the glands. Unstimulated gastric glands accumulated [14C]AP indicating the existence of basal acid production in these glands, and EGF caused a small but significant reduction in basal [14C]AP uptake. A similar reduction of basal [14C]AP uptake was observed after exposure to omeprazole but not after ranitidine or prostaglandin E2 (PGE2). Histamine, dibutyryl cyclic AMP and K+ caused a strong and dose-dependent stimulation of acid formation by the glands. EGF, like omeprazole, reduced dose-dependently the [14C]AP accumulation stimulated by both histamine and dibutyryl cyclic AMP, while ranitidine and PGE2 reduced histamine- but not dibutyryl-cyclic-AMP-stimulated accumulation of [14C]AP. In the absence of other external stimuli, an increased K+ concentration enhanced [14C]AP accumulation to levels similar to those produced by histamine and this effect was not changed by EGF, ranitidine or PGE2 but was inhibited by omeprazole. We conclude that EGF interferes with the final steps of acid production between cyclic nucleotides and proton pump of the parietal cells.  (+info)

Inhibition of gastric H+,K+-ATPase and acid secretion by SCH 28080, a substituted pyridyl(1,2a)imidazole. (77/181)

A hydrophobic amine, SCH 28080, 2-methyl-8-(phenylmethoxy)imidazo(1,2a)pyridine-3-acetonitrile, previously shown to inhibit gastric acid secretion in vivo and in vitro, was also shown to inhibit basal and stimulated aminopyrine accumulation in isolated gastric glands when histamine, high K+ concentrations, or dibutyryl cAMP were used as secretagogues. Stimulated, but not basal, oxygen consumption was also inhibited. Neutralization of the acid space of the parietal cell by high concentrations of the weak base, imidazole, reduced the potency of the drug, suggesting that SCH 28080 was active when protonated. Studies on the isolated H+,K+-ATPase showed that the compound inhibited the enzyme competitively with K+, whether ATP or p-nitrophenyl phosphate were used as substrates. In contrast, the inhibition was mixed with respect to p-nitrophenyl phosphate and uncompetitive with respect to ATP. The drug reduced the steady state level of the phosphoenzyme but not the observed rate constant for phosphoenzyme formation in the absence of K+ nor the quantity of phosphoenzyme reacting with K+. The drug quenched the fluorescence of fluorescein isothiocyanate-modified enzyme and also inhibited the ATP-independent K+ exchange reaction of the H+,K+-ATPase. Its action on gastric acid secretion can be explained by inhibition of the H+,K+-ATPase by reversible complexation of the enzyme. This class of compound, therefore, acts as a reversible inhibitor of gastric acid secretion.  (+info)

A correlation between serum mebendazole concentrations and the aminopyrine breath test. Implications in the treatment of hydatid disease. (78/181)

In 25 patients an [14C]-aminopyrine breath test (ABT) was performed immediately before the oral administration of 1.5-2 g of mebendazole three times daily. The concentration of mebendazole in serum was measured 2 h after each drug intake. A significant correlation was found between the results of ABT and the serum drug concentrations obtained after the second and third intake, as well as the highest concentration value. The ABT was repeated in six patients during a continuous treatment with mebendazole. In all of them this test indicated an increase in 14CO2 production with continued treatment. The results support the view that mebendazole is metabolized by the liver monooxygenase activity and behaves as an enzyme inducer.  (+info)

Effect of malotilate (diisopropyl 1,3-dithiol-2-ylidenemalonate) on drug metabolizing activity in rat liver microsomes. (79/181)

The effect of malotilate (diisopropyl 1,3-dithiol-2-ylidenemalonate) on drug metabolizing activity in rat liver microsomes was examined. Malotilate (500 mg/kg/day) was administered orally to rats for 3 days. The contents of cytochrome P-450 (P-450) and cytochrome b5 (b5), the activity of NADPH-cytochrome c reductase, and the metabolization of aniline, aminopyrine, benzo(a)pyrene (B(a)P) and 7-ethoxycoumarin (7-EC) in the microsomal fraction were examined 24 hr after the final administration of malotilate. The content of b5 and the activity of NADPH-cytochrome c reductase were increased by the malotilate treatment, but the content of P-450 was not significantly affected. 7-EC O-deethylation was markedly and aminopyrine N-demethylation was moderately enhanced; in contrast, aniline hydroxylation was significantly and B(a)P hydroxylation was slightly reduced. Such different effects of malotilate among the four substrate-metabolizing activities may be due mainly to the increase in the content of b5, which participates in the transport of the second electron required for P-450 function to various extents. It is also possible that malotilate affects the population of P-450 subtypes, each having a different substrate specificity and a different affinity for b5.  (+info)

Induction of SOS functions in Escherichia coli and biosynthesis of nitrosamine in rabbits by nitrogen dioxide. (80/181)

Nitrogen dioxide induced SOS functions in Salmonella typhimurium and Escherichia coli K-12 and was mutagenic in Escherichia coli WP2. When a rabbit was administered aminopyrine intravenously and administered nitrogen dioxide by inhalation, N-nitrosodimethylamine was detected in its blood. Analysis was conducted with 15N-nitrosodimethylamine as an internal standard by a combination of capillary gas chromatography and mass spectrometry. Accompanying administration of cystamine increased the blood concentration of N-nitrosodimethylamine in the rabbit, suggesting inhibition of its metabolism. Concurrent sulfur trioxide inhalation increased N-nitrosodimethylamine formation in the rabbit.  (+info)