(1/447) MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites.

MOT1 is an ATPase which can dissociate TATA binding protein (TBP)-DNA complexes in a reaction requiring ATP hydrolysis. Consistent with this observation, MOT1 can repress basal transcription in vitro. Paradoxically, however, some genes, such as HIS4, appear to require MOT1 as an activator of transcription in vivo. To further investigate the function of MOT1 in basal transcription, we performed in vitro transcription reactions using yeast nuclear extracts depleted of MOT1. Quantitation of MOT1 revealed that it is an abundant protein, with nuclear extracts from wild-type cells containing a molar excess of MOT1 over TBP. Surprisingly, MOT1 can weakly activate basal transcription in vitro. This activation by MOT1 is detectable with amounts of MOT1 that are approximately stoichiometric to TBP. With amounts of MOT1 similar to those present in wild-type nuclear extracts, MOT1 behaves as a weak repressor of basal transcription. These results suggest that MOT1 might activate transcription via an indirect mechanism in which limiting TBP can be liberated from nonpromoter sites for use at promoters. In support of this idea, excess nonpromoter DNA sequesters TBP and represses transcription, but this effect can be reversed by addition of MOT1. These results help to reconcile previous in vitro and in vivo results and expand the repertoire of transcriptional control strategies to include factor-assisted redistribution of TBP between promoter and nonpromoter sites.  (+info)

(2/447) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1.

Recently it was found that Methylobacterium extorquens AM1 contains both tetrahydromethanopterin (H4MPT) and tetrahydrofolate (H4F) as carriers of C1 units. In this paper we report that the aerobic methylotroph contains a methenyl H4MPT cyclohydrolase (0.9 U x mg-1 cell extract protein) and a methenyl H4F cyclohydrolase (0.23 U x mg-1). Both enzymes, which were specific for their substrates, were purified and characterized and the encoding genes identified via the N-terminal amino acid sequence. The purified methenyl H4MPT cyclohydrolase with a specific activity of 630 U x mg-1 (Vmax = 1500 U x mg-1; Km = 30 microm) was found to be composed of two identical subunits of molecular mass 33 kDa. Its sequence was approximately 40% identical to that of methenyl H4MPT cyclohydrolases from methanogenic archaea. The methenyl H4F cyclohydrolase with a specific activity of 100 U x mg-1 (Vmax = 330 U x mg-1; Km = 80 microm) was found to be composed of two identical subunits of molecular mass 22 kDa. Its sequence was not similar to that of methenyl H4MPT cyclohydrolases or to that of other methenyl H4F cyclohydrolases. Based on the specific activities in cell extract and from the growth properties of insertion mutants it is suggested that the methenyl H4MPT cyclohydrolase might have a catabolic, and the methenyl-H4F cyclohydrolase an anabolic function in the C1-unit metabolism of M. extorquens AM1.  (+info)

(3/447) Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent).  (+info)

(4/447) The crystal structure of a bacterial, bifunctional 5,10 methylene-tetrahydrofolate dehydrogenase/cyclohydrolase.

The structure of a bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase from Escherichia coli has been determined at 2.5 A resolution in the absence of bound substrates and compared to the NADP-bound structure of the homologous enzyme domains from a trifunctional human synthetase enzyme. Superposition of these structures allows the identification of a highly conserved cluster of basic residues that are appropriately positioned to serve as a binding site for the poly-gamma-glutamyl tail of the tetrahydrofolate substrate. Modeling studies and molecular dynamic simulations of bound methylene-tetrahydrofolate and NADP shows that this binding site would allow interaction of the nicotinamide and pterin rings in the dehydrogenase active site. Comparison of these enzymes also indicates differences between their active sites that might allow the development of inhibitors specific to the bacterial target.  (+info)

(5/447) Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae.

Transcriptional activators function in vivo via binding sites that may be packaged into chromatin. Here we show that whereas the transcriptional activator GAL4 is strongly able to perturb chromatin structure via a nucleosomal binding site in yeast, GCN4 does so poorly. Correspondingly, GCN4 requires assistance from an accessory protein, RAP1, for activation of the HIS4 promoter, whereas GAL4 does not. The requirement for RAP1 for GCN4-mediated HIS4 activation is dictated by the DNA-binding domain of GCN4 and not the activation domain, suggesting that RAP1 assists GCN4 in gaining access to its binding site. Consistent with this, overexpression of GCN4 partially alleviates the requirement for RAP1, whereas HIS4 activation via a weak GAL4 binding site requires RAP1. RAP1 is extremely effective at interfering with positioning of a nucleosome containing its binding site, consistent with a role in opening chromatin at the HIS4 promoter. Furthermore, increasing the spacing between binding sites for RAP1 and GCN4 by 5 or 10 bp does not impair HIS4 activation, indicating that cooperative protein-protein interactions are not involved in transcriptional facilitation by RAP1. We conclude that an important role of RAP1 is to assist activator binding by opening chromatin.  (+info)

(6/447) A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum.

Genomic information is rapidly accumulating for the human malaria pathogen, Plasmodium falciparum. Our ability to perform genetic manipulations to understand Plasmodium gene function is limited. Dihydrofolate reductase is the only selectable marker presently available for transfection of P. falciparum. Additional markers are needed for complementation and for expression of mutated forms of essential genes. We tested parasite sensitivity to different drugs for which selectable markers are available. Two of these drugs that were very effective as antiplasmodial inhibitors in culture, blasticidin and geneticin (G418), were selected for further study. The genes BSD, encoding blasticidin S deaminase of Aspergillus terreus, and NEO, encoding neomycin phosphotransferase II from transposon Tn 5, were expressed under the histidine-rich protein III (HRPIII) gene promoter and tested for their ability to confer resistance to blasticidin or G418, respectively. After transfection, blasticidin and G418-resistant parasites tested positive for plasmid replication and BSD or NEO expression. Cross-resistance assays indicate that these markers are independent. The plasmid copy number and the enzymatic activity depended directly on the concentration of the drug used for selection. These markers set the stage for new methods of functional analysis of the P. falciparum genome.  (+info)

(7/447) Efficient expression, purification and crystallisation of two hyperthermostable enzymes of histidine biosynthesis.

Enzymes from hyperthermophiles can be efficiently purified after expression in mesophilic hosts and are well-suited for crystallisation attempts. Two enzymes of histidine biosynthesis from Thermotoga maritima, N'-((5'-phosphoribosyl)-formimino)-5-aminoimidazol-4-carb oxamid ribonucleotide isomerase and the cyclase moiety of imidazoleglycerol phosphate synthase, were overexpressed in Escherichia coli, both in their native and seleno-methionine-labelled forms, purified by heat precipitation of host proteins and crystallised. N'-((5'-phosphoribosyl)-formimino)-5-aminoimidazol-4-carb oxamid ribonucleotide isomerase crystallised in four different forms, all suitable for X-ray structure solution, and the cyclase moiety of imidazoleglycerol phosphate synthase yielded one crystal form that diffracted to atomic resolution. The obtained crystals will enable the determination of the first three-dimensional structures of enzymes from the histidine biosynthetic pathway.  (+info)

(8/447) Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases.

The methylotrophic proteobacterium Methylobacterium extorquens AM1 possesses tetrahydromethanopterin (H(4)MPT)-dependent enzymes, which are otherwise specific to methanogenic and sulfate-reducing archaea and which have been suggested to be involved in formaldehyde oxidation to CO(2) in M. extorquens AM1. The distribution of H(4)MPT-dependent enzyme activities in cell extracts of methylotrophic bacteria from 13 different genera are reported. H(4)MPT-dependent activities were detected in all of the methylotrophic and methanotrophic proteobacteria tested that assimilate formaldehyde by the serine or ribulose monophosphate pathway. H(4)MPT-dependent activities were also found in autotrophic Xanthobacter strains. However, no H(4)MPT-dependent enzyme activities could be detected in other autotrophic alpha-proteobacteria or in gram-positive methylotrophic bacteria. Genes encoding methenyl H(4)MPT cyclohydrolase (mch genes) were cloned and sequenced from several proteobacteria. Bacterial and archaeal Mch sequences have roughly 35% amino acid identity and form distinct groups in phylogenetic analysis.  (+info)