Basis for prokaryotic specificity of action of aminoglycoside antibiotics. (25/2111)

The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), which is an adenosine in prokaryotic ribosomes and a guanosine in eukaryotic ribosomes. Expression in E.coli of plasmid-encoded 16S rRNA containing an A1408 to G substitution confers resistance to a subclass of the aminoglycoside antibiotics that contain a 6' amino group on ring I. Chemical footprinting experiments indicate that resistance arises from the lower affinity of the drug for the eukaryotic rRNA sequence. The 1408G ribosomes are resistant to the same subclass of aminoglycosides as previously observed both for eukaryotic ribosomes and bacterial ribosomes containing a methylation at the N1 position of A1408. The results indicate that the identity of the nucleotide at position 1408 is a major determinant of specificity of aminoglycoside action, and agree with prior structural studies of aminoglycoside-rRNA complexes.  (+info)

Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. (26/2111)

The nephrotoxicity and ototoxicity associated with once-daily versus twice-daily administration of aminoglycosides was assessed in patients with suspected or proven gram-negative bacterial infections in a randomized, double-blind clinical trial. Patients who received therapy for >/=72 h were evaluated for toxicity. Patients also received concomitant antibiotics as deemed necessary for treatment of their infection. Plasma aminoglycoside concentrations, prospective aminoglycoside dosage adjustment, and serial audiologic and renal status evaluations were performed. The probability of occurrence of a nephrotoxic event and its relationship to doses and daily aminoglycoside exposure served as the main outcome measurement. One hundred twenty-three patients were enrolled in the study, with 83 patients receiving therapy for at least 72 h. For 74 patients plasma aminoglycoside concentrations were available for analysis, and the patients formed the group evaluable for toxicity. The primary infectious diagnosis for the patients who were enrolled in the study were bacteremia or sepsis, respiratory infections, skin and soft tissue infections, or urosepsis or pyelonephritis. Of the 74 patients evaluable for toxicity, 39 received doses twice daily and 35 received doses once daily and a placebo 12 h later. Nephrotoxicity occurred in 6 of 39 (15.4%) patients who received aminoglycosides twice daily and 0 of 35 patients who received aminoglycosides once daily. The schedule of aminoglycoside administration, concomitant use of vancomycin, and daily area under the plasma concentration-time curve (AUC) for the aminoglycosides were found to be significant predictors of nephrotoxicity by multivariate logistic regression analysis (P +info)

In vitro activities of the everninomicin SCH 27899 and other newer antimicrobial agents against Borrelia burgdorferi. (27/2111)

The in vitro activity of the everninomicin antibiotic SCH 27899 against 17 isolates of Borrelia spp. was investigated. MICs ranged from 0.06 to 0.5 microg/ml. Time-kill studies with the B31 strain of B. burgdorferi demonstrated >/=3-log10-unit killing after 72 h with concentrations representing four times the MIC. The in vitro activity of four other newer antimicrobial agents, meropenem, cefepime, quinupristin-dalfopristin, and linezolid, was also tested against the B31 strain. Meropenem was the most potent of the latter agents, with an MIC of 0.125 microg/ml.  (+info)

Transcriptional control of peptidoglycan precursor synthesis during sporulation in Bacillus sphaericus. (28/2111)

Synthesis of enzymes functional in the synthesis of nucleotide precursors of peptidoglycan ceases upon initiation of sporulation in Bacillus sphaericus. During sporulation, two periods of synthesis of these enzymes occur. The first starts at spore septum formation and is conincident with forespore engulfment; it involves the synthesis of those enzymes required for making the precursor of vegetative-type peptidoglycan, including L-lysyl ligase but no mesodiaminopimelyl ligase. The second period occurs shortly before the appearance of cortex. It involves the synthesis of diaminopimelyl ligase and the other enzymes needed for making the precursor of cortical peptidoglycan, but not lysyl ligase. Both events are a consequence of derepression at the level of transcription. Neither period of synthesis occurs in asporogenous mutants whose morphological block is at the point of spore septum formation.  (+info)

Stimulatory and inhibitory properties of aminoglycoside antibiotics at N-methyl-D-aspartate receptors. (29/2111)

The effects of aminoglycoside antibiotics on N-methyl-D-aspartate (NMDA) receptors were studied using voltage-clamp recording of recombinant NMDA receptors expressed in Xenopus oocytes. A number of aminoglycosides were found to potentiate macroscopic currents at heteromeric NR1A/NR2B receptors, but not at NR1A/NR2A, NR1A/NR2C, NR1A/NR2D, or NR1B/NR2B receptors. The degree of potentiation had a rank order neomycin B > paromomycin > gentamicin C > geneticin > kanamycin A > streptomycin. Potentiation was not seen with kasugamycin and spectinomycin. The degree of stimulation paralleled the number of the amino groups in the aminoglycosides. The stimulatory effects of aminoglycosides were more pronounced at subsaturating concentrations of glycine and at acidic pH, similar to the stimulatory effects of spermine. We measured the effects of aminoglycosides at mutant NMDA receptors to determine which amino acid residues in NMDA receptor subunits are involved in stimulation. Mutations that reduced or abolished spermine stimulation also reduced stimulation by aminoglycosides. Several aminoglycosides produced a weak voltage-dependent block of NMDA receptors, but the degree of inhibition did not appear to correlate with the number of amino groups in the molecule. The results suggest that aminoglycosides having more than three amino groups have stimulatory effects that are mediated through the spermine-binding site on NMDA receptors.  (+info)

Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. (30/2111)

We have developed methods for studying the interactions between small molecules and RNA and have applied them to characterize the binding of three classes of aminoglycoside antibiotics to ribosomal RNA subdomains. High-resolution MS was used to quantitatively identify the noncovalent binding interactions between mixtures of aminoglycosides and multiple RNA targets simultaneously. Signal overlap among RNA targets was avoided by the addition of neutral mass tags that direct each RNA target to a unique region of the spectrum. In addition to determining binding affinities, the locations of the binding sites on the RNAs were identified from a protection pattern generated by fragmenting the aminoglycoside/RNA complex. Specific complexes were observed for the prokaryotic rRNA A-site subdomain with ribostamycin, paromomycin, and lividomycin, whereas apramycin preferentially formed a complex with the eukaryotic subdomain. We show that differences in binding between paromomycin and ribostamycin can be probed by using an MS-MS protection assay. We have introduced specific base substitutions in the RNA models and have measured their impact on binding affinity and selectivity. The binding of apramycin to the prokaryotic subdomain strongly depends on the identity of position 1408, as evidenced by the selective increase in affinity for an A1408G mutant. An A1409-G1491 mismatch pair in the prokaryotic subdomain enhanced the binding of tobramycin and bekanamycin. These observations demonstrate the power of MS-based methods to provide molecular insights into small molecule/RNA interactions useful in the design of selective new antimicrobial drugs.  (+info)

Enhanced transformability with heterospecific deoxyribonucleic acid in a Streptococcus sanguis mutant impaired in ribonucleic acid polymerase activity. (31/2111)

We have induced with nitrosoguanidine in Streptococcus sanguis a mutation conferring inability to grow and synthesize ribonucleic acid (RNA) at 42 C, the optimal temperature for growth and RNA synthesis in the parental strain. The mutation (ts) is transferable via transforming deoxyribonucleic acid (DNA) and is replaceable by its wild-type allele with fairly high efficiency in transformation reactions. The ts mutation is unlinked to the sites of mutation conferring resistance of rifampin (rifr) and streptolydigin (stgr), known to affect the beta subunit of DNA-dependent RNA polymerase. Extracts from strains carrying the ts mutation are more sensitive to elevated temperatures than are parental extracts when assayed for DNA-dependent RNA polymerase. The conclusion that the mutation causes a temperature-sensitive defect in some component of this enzyme (other than beta) is supported by the finding that the polymerase activity of a heat-inactivated ts stgr extract cannot be increased by addition of an unheated ts stgs extract, which is itself inactivated by streptolydigin. S. sanguis recipients carrying the ts mutation are highly transformable with heterospecific DNA, especially at the restrictive temperature.  (+info)

Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. (32/2111)

We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin gamma(1)(I) and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known protein-binding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in their free and protein-bound forms. The proteins were selected to provide examples in which the minor-groove binding site for the carbohydrate is (CAP) or is not (GCN4) covered by the protein. Additionally, peptides related to the GCN4 and CREB families, which have different bending effects on their DNA-binding sites, were used. We observe that proteins of the CREB class, which induce a tendency to bend toward the minor groove at the center of the site, inhibit drug-cleavage sites located at the center of the free AP-1 or CRE DNA sites. In the case of GCN4, which does not induce DNA bending, there is no effect on calicheamicin cleavage of the CRE site, but we observe a GCN4-induced rearrangement of the cutting pattern in the AP-1 site. This effect may arise from either a subtle local conformational rearrangement not accompanied by bending or a localized reduction in DNA flexibility. Whereas GCN4 binding is not inhibited by the calicheamicin aryltetrasaccharide, binding of CAP to its DNA target is significantly inhibited, and calicheamicin cutting of DNA at the center of the CAP-DNA complex site is strongly reduced by protein binding. This result probably reflects steric inhibition of drug binding by the protein.  (+info)