Membrane localization, oligomerization, and phosphorylation are required for optimal raf activation. (17/101)

Activation of the serine/threonine kinase c-Raf-1 requires membrane localization, phosphorylation, and oligomerization. To study these mechanisms of Raf activation more precisely, we have used a membrane-localized fusion protein, myr-Raf-GyrB, which can be activated by coumermycin-induced oligomerization in NIH3T3 transfectants. By introducing a series of point mutations into the myr-Raf-GyrB kinase domain (S338A, S338A/Y341F, Y340F/Y341F, and T491A/S494A) we can separately study the role that membrane localization, phosphorylation, and oligomerization play in the process of Raf activation. We find that phosphorylation of Ser-338 plays a critical role in Raf activation and that this requires membrane localization but not oligomerization of Raf. Mutation of Tyr-341 had a limited effect, whereas mutation of both Ser-338 and Tyr-341 resulted in a synergistic loss of Raf activation following coumermycin-induced dimerization. Importantly, we found that membrane localization and phosphorylation of Ser-338 were not sufficient to activate Raf in the absence of oligomerization. Thus, our studies suggest that three key steps are required for optimal Raf activation: recruitment to the plasma membrane by GTP-bound Ras, phosphorylation via membrane-resident kinases, and oligomerization.  (+info)

An unusual amide synthetase (CouL) from the coumermycin A1 biosynthetic gene cluster from Streptomyces rishiriensis DSM 40489. (18/101)

The aminocoumarin antibiotic coumermycin A1 produced by Streptomyces rishiriensis DSM 40489 contains two amide bonds. The biosynthetic gene cluster of coumermycin contains a putative amide synthetase gene, couL, encoding a protein of 529 amino acids. CouL was overexpressed as hexahistidine fusion protein in Escherichia coli and purified by metal affinity chromatography, resulting in a nearly homogenous protein. CouL catalysed the formation of both amide bonds of coumermycin A1, i.e. between the central 3-methylpyrrole-2,4-dicarboxylic acid and two aminocoumarin moieties. Gel exclusion chromatography showed that the enzyme is active as a monomer. The activity was strictly dependent on the presence of ATP and Mn2+ or Mg2+. The apparent Km values were determined as 26 micro m for the 3-methylpyrrole-2,4-dicarboxylic acid and 44 micro m for the aminocoumarin moiety, respectively. Several analogues of the pyrrole dicarboxylic acid were accepted as substrates. In contrast, pyridine carboxylic acids were not accepted. 3-Dimethylallyl-4-hydroxybenzoic acid, the acyl component in novobiocin biosynthesis, was well accepted, despite its structural difference from the genuine acyl substrate of CouL.  (+info)

Identification of a topoisomerase IV in actinobacteria: purification and characterization of ParYR and GyrBR from the coumermycin A1 producer Streptomyces rishiriensis DSM 40489. (19/101)

The biosynthetic gene clusters of the gyrase inhibitors coumermycin A(1) and clorobiocin contain two different resistance genes (gyrB(R) and parY(R)). Both genes code for B subunits of type II topoisomerases. The authors have now overexpressed and purified the encoded proteins, as well as the corresponding A subunits GyrA and ParX. Expression was carried out in Streptomyces lividans in the form of hexahistidine fusion proteins, allowing purification by nickel affinity chromatography. The complex of GyrA and GyrB(R) was found to catalyse ATP-dependent supercoiling of DNA, i.e. to function as a gyrase, whereas the complex of ParX and ParY(R) catalysed ATP-dependent decatenation and relaxation, i.e. the functions of topoisomerase IV (topo IV). This is believed to represent the first topo IV identified in the class of actinobacteria, and the first demonstration of the formation of a topo IV as a resistance mechanism of an antibiotic producer.  (+info)

Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. (20/101)

Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at serine 51 inhibits protein synthesis in cells subjected to various forms of stress including virus infection. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced pathogenicity through multiple mechanisms including the inhibition of apoptosis and the blockade of interferon (IFN) action. We have investigated a possible functional relationship between the E6 oncoprotein and eIF2alpha phosphorylation by an inducible-dimerization form of the IFN-inducible protein kinase PKR. Herein, we demonstrate that HPV type 18 E6 protein synthesis is rapidly repressed upon eIF2alpha phosphorylation caused by the conditional activation of the kinase. The remainder of E6, however, can rescue cells from PKR-mediated inhibition of protein synthesis and induction of apoptosis. E6 physically associates with GADD34/PP1 holophosphatase complex, which mediates translational recovery, and facilitates eIF2alpha dephosphorylation. Inhibition of eIF2alpha phosphorylation by E6 mitigates eIF2alpha-dependent responses to transcription and translation of proapoptotic genes. These findings demonstrate, for the first time, a role of the oncogenic E6 in apoptotic signaling induced by PKR and eIF2alpha phosphorylation. The functional interaction between E6 and the eIF2alpha phosphorylation pathway may have important implications for HPV infection and associated pathogenesis.  (+info)

In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic, and synthetic approach. (21/101)

The aminocoumarin antibiotics clorobiocin, novobiocin, and coumermycin A(1) are inhibitors of bacterial gyrase. Their chemical structures contain amide bonds, formed between an aminocoumarin ring and an aromatic acyl component, which is 3-dimethylallyl-4-hydroxybenzoate in the case of novobiocin and clorobiocin. These amide bonds are formed under catalysis of the gene products of cloL, novL, and couL, respectively. We first examined the substrate specificity of the purified amide synthetases CloL, NovL, and CouL for the various analogs of the prenylated benzoate moiety. We then generated new aminocoumarin antibiotics by feeding synthetic analogs of the 3-dimethylallyl-4-hydroxybenzoate moiety to a mutant strain defective in the biosynthesis of the prenylated benzoate moiety. This resulted in the formation of 32 new aminocoumarin compounds. The structures of these compounds were elucidated using FAB-MS and (1)H-NMR spectroscopy.  (+info)

Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. (22/101)

The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.  (+info)

Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. (23/101)

For screening a pool of potential substrates that load carrier domains found in nonribosomal peptide synthetases, large molecule mass spectrometry is shown to be a new, unbiased assay. Combining the high resolving power of Fourier transform mass spectrometry with the ability of adenylation domains to select their own substrates, the mass change that takes place upon formation of a covalent intermediate thus identifies the substrate. This assay has an advantage over traditional radiochemical assays in that many substrates, the substrate pool, can be screened simultaneously. Using proteins on the nikkomycin, clorobiocin, coumermycin A1, yersiniabactin, pyochelin, and enterobactin biosynthetic pathways as proof of principle, preferred substrates are readily identified from substrate pools. Furthermore, this assay can be used to provide insight into the timing of tailoring events of biosynthetic pathways as demonstrated using the bromination reaction found on the jamaicamide biosynthetic pathway. Finally, this assay can provide insight into the role and function of orphan gene clusters for which the encoded natural product is unknown. This is demonstrated by identifying the substrates for two NRPS modules from the pksN and pksJ genes that are found on an orphan NRPS/PKS hybrid cluster from Bacillus subtilis. This new assay format is especially timely for activity screening in an era when new types of thiotemplate assembly lines that defy classification are being discovered at an accelerating rate.  (+info)

Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. (24/101)

When Escherichia coli K-12 was shifted from a medium lacking salt to one containing 0.5 M NaCl, both the [ATP]/[ADP] ratio and negative supercoiling of plasmid DNA increased within a few minutes. After about 10 min both declined, eventually reaching a level slightly above that observed with cells growing exponentially in the absence of salt. Since in vitro the [ATP]/[ADP] ratio influences the level of supercoiling generated by gyrase (H. Westerhoff, M. O'Dea, A. Maxwell, and M. Gellert, Cell Biophys. 12:157-181, 1988), the physiological response of supercoiling to salt shock is most easily explained by the sensitivity of gyrase to changes in the intracellular [ATP]/[ADP] ratio. This raises the possibility that the [ATP]/[ADP] ratio is an important factor in the control of supercoiling.  (+info)