Bi-directional transport of GABA in human embryonic kidney (HEK-293) cells stably expressing the rat GABA transporter GAT-1. (57/617)

1. Bi-directional GABA-transport was studied by performing uptake and superfusion experiments in human embryonic kidney 293 cells stably expressing the rat GABA transporter rGAT-1. 2. K(M) and V(max) values for [(3)H]-GABA uptake were 11.7+/-1.8 microM and 403+/-55 pmol min(-1) 10(-6) cells (n=9), respectively. 3. Kinetic analysis of outward transport was performed by pre-labelling the cells with increasing concentrations of [(3)H]-GABA and triggering outward transport with 333 microM GABA. Approximate apparent K(M) and V(max) values were 12 mM and 50 pmol min(-1) 10(-6) cells, respectively. 4. GABA re-uptake inhibitors (RI; e.g. tiagabine), as well as, substrates of the rGAT-1 (e.g. GABA, nipecotic acid) concentration dependently decreased [(3)H]-GABA uptake and increased efflux of [(3)H]-GABA from pre-labelled cells. The IC(50) values for inhibiting uptake and the EC(50) values for increasing efflux were significantly correlated (r(2)=0.99). 5. On superfusion, RI antagonized the efflux-enhancing effect of the substrates. The effect of the latter was markedly augmented in the presence of ouabain (100 microM), whereas the effect of RI remained unchanged. The most likely explanation for the release enhancing effect of RI is interruption of ongoing re-uptake. 6. The structural GABA-analogue 2,4-diamino-n-butyric acid (DABA) exhibited a bell-shaped concentration response curve on [(3)H]-GABA efflux with the maximum at 1 mM, and displayed a deviation from the sigmoidal inhibition curve in uptake experiments in the same concentration range. At concentrations below 1 mM, DABA inhibited [(3)H]-GABA uptake non-competitively, while at 1 mM and above the inhibition of uptake followed a competitive manner. 7. The results provide information of GABA inward and outward transport, and document a complex interaction of the rGAT-1 with its substrate DABA.  (+info)

Gamma-aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. (58/617)

Enzymatic analyses of Bacillus thuringiensis extracts suggest that a modified Krebs tricarboxylic acid cycle (without alpha-ketoglutarate dehydrogenase) can operate during sporulation in conjunction with the glyoxylic acid cycle and the gamma-aminobutyric acid pathway.  (+info)

Synaptic transmission in nucleus tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic glutamate receptors in rats. (59/617)

Presynaptic metabotropic glutamate receptors (mGluRs) serve as autoreceptors throughout the CNS to inhibit glutamate release and depress glutamatergic transmission. Both presynaptic and postsynaptic mGluRs have been implicated in shaping autonomic signal transmission in the nucleus tractus solitarius (NTS). We sought to test the hypothesis that activation of presynaptic mGluRs depresses neurotransmission between primary autonomic afferent fibres and second-order NTS neurones. In second-order NTS neurones, excitatory postsynaptic currents (EPSCs) synaptically evoked by stimulation of primary sensory afferent fibres in the tractus solitarius (ts) and currents postsynaptically evoked by alpha-amino-3-hydroxy-4-isoxazoleproprionic acid (AMPA) were studied in the presence and absence of mGluR agonists and antagonists. Real-time quantitative RT-PCR (reverse transcription-polymerase chain reaction) was used to determine whether the genes for the mGluR subtypes were expressed in the cell bodies of the primary autonomic afferent fibres. Agonist activation of Group II and III but not Group I mGluRs reduced the peak amplitude of synaptically (ts) evoked EPSCs in a concentration-dependent manner while having no effect on postsynaptically (AMPA) evoked currents recorded in the same neurones. At the highest concentrations, the Group II agonist, (2S,3S,4S)-CCG/(2S,1'S,2'S)-2-carboxycyclopropyl (L-CCG-I), decreased the amplitude of the ts-evoked EPSCs by 39 % with an EC50 of 21 microM, and the Group III agonist, L(+)-2-amino-4-phosphonobutyric acid (L-AP4), decreased the evoked EPSCs by 71 % with an EC50 of 1 mM. mRNA for all eight mGluR subtypes was detected in the autonomic afferent fibre cell bodies in the nodose and jugular ganglia. Group II and III antagonists ((2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (MCCG) and (RS)-alpha-methylserine-O-phosphate (MSOP)), at concentrations that blocked the respective agonist-induced synaptic depression, attenuated the frequency-dependent synaptic depression associated with increasing frequencies of ts stimulation by 13-34 % and 13-19 %, respectively (P < 0.05, for each). We conclude that Group II and III mGluRs (synthesized in the cell bodies of the primary autonomic afferent fibres and transported to the central terminals in the NTS) contribute to the depression of autonomic signal transmission by attenuating presynaptic release of glutamate.  (+info)

A facilitated electron transfer of copper--zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode. (60/617)

The direct electrochemical redox reaction of bovine erythrocyte copper--zinc superoxide dismutase (Cu(2)Zn(2)SOD) was clearly observed at a gold electrode modified with a self-assembled monolayer (SAM) of cysteine in phosphate buffer solution containing SOD, although its reaction could not be observed at the bare electrode. In this case, SOD was found to be stably confined on the SAM of cysteine and the redox response could be observed even when the cysteine-SAM electrode used in the SOD solution was transferred to the pure electrolyte solution containing no SOD, suggesting the permanent binding of SOD via the SAM of cysteine on the electrode surface. The electrode reaction of the SOD confined on the cysteine-SAM electrode was found to be quasi-reversible with the formal potential of 65 +/- 3 mV vs. Ag/AgCl and its kinetic parameters were estimated: the electron transfer rate constant k(s) is 1.2 +/- 0.2 s(-1) and the anodic (alpha(a)) and cathodic (alpha(c)) transfer coefficients are 0.39 +/- 0.02 and 0.61 +/- 0.02, respectively. The assignment of the redox peak of SOD at the cysteine-SAM modified electrode could be sufficiently carried out using the native SOD (Cu(2)Zn(2)SOD), its Cu- or Zn-free derivatives (E(2)Zn(2)SOD and Cu(2)E(2)SOD, E designates an empty site) and the SOD reconstituted from E(2)Zn(2)SOD and Cu(2+). The Cu complex moiety, the active site for the enzymatic dismutation of the superoxide ion, was characterized to be also the electroactive site of SOD. In addition, we found that the SOD confined on the electrode can be expected to possess its inherent enzymatic activity for dismutation of the superoxide ion.  (+info)

trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors. (61/617)

1. This study investigated the effects of a number of GABA analogues on rat rho3 GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. 2. The potency order of agonists was muscimol (EC(50)=1.9 +/- 0.1 microM) (+)-trans-3-aminocyclopentanecarboxylic acids ((+)-TACP; EC(50)=2.7 +/- 0.9 microM) trans-4-aminocrotonic acid (TACA; EC(50)=3.8 +/-0.3 microM) GABA (EC(50)=4.0 +/- 0.3 microM) > thiomuscimol (EC(50)=24.8 +/- 2.6 microM) > (+/-)-cis-2-aminomethylcyclopropane-carboxylic acid ((+/-)-CAMP; EC(50)=52.6 +/-8.7 microM) > cis-4-aminocrotonic acid (CACA; EC(50)=139.4 +/- 5.2 microM). 3. The potency order of antagonists was (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP; K(B)=4.8+/-1.8 microM) (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA; K(B)=4.8 +/-0.8 microM) > (piperidin-4-yl)methylphosphinic acid (P4MPA; K(B)=10.2+/-2.3 microM) 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; K(B)=10.2+/-0.3 microM) imidazole-4-acetic acid (I4AA; K(B)=12.6+/-2.7 microM) > 3-aminopropylphosphonic acid (3-APA; K(B)=35.8+/-13.5 microM). 4. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA; 300 microM) had no effect as an agonist or an antagonist indicating that the C2 methyl substituent is sterically interacting with the ligand-binding site of rat rho3 GABA(C) receptors. 5. 2-MeTACA affects rho1 and rho2 but not rho3 GABA(C) receptors. In contrast, (plus minus)-TAMP is a partial agonist at rho1 and rho2 GABA(C) receptors, while at rat rho3 GABA(C) receptors it is an antagonist. Thus, 2-MeTACA and (+/-)-TAMP could be important pharmacological tools because they may functionally differentiate between rho1, rho2 and rho3 GABA(C) receptors in vitro.  (+info)

Retinal origins of the primate multifocal ERG: implications for the human response. (62/617)

PURPOSE: To better understand the cellular contributions to the human multifocal ERG (mfERG), rhesus monkey and human mfERGs were recorded using the same stimulus conditions. The monkey mfERGs were recorded before and after injections of pharmacologic agents known to selectively block activity of particular cells and circuits in the retina. METHODS: Photopic mfERGs were recorded with Dawson-Trick-Litzkow (DTL) fiber electrodes from 16 eyes of 10 anesthetized adult rhesus monkeys (Macaca mulatta) and from 4 normal humans. The display consisted of 103 equal-sized hexagons within 17 degrees of the fovea. Monkey mfERGs were obtained before and after inner retinal responses were suppressed with intravitreal injections of tetrodotoxin (TTX), TTX+N-methyl-D-aspartic acid (NMDA), TTX+NMDA with the gamma-aminobutyric acid (GABA(A&C)) antagonist picrotoxin (PTX), or the inhibitory amino acid GABA and after L-2 amino-4-phosphonobutyric acid (APB) to block signal transmission to ON-bipolar cells. Finally, a combination of APB and cis-2,3 piperidine dicarboxylic acid (PDA) was used to isolate the contributions from the cone photoreceptors. RESULTS: TTX, which blocks sodium-based action potentials, removes a large contribution from the monkey's mfERG, but it does not remove all inner retinal influences. After administration of TTX, the mfERG is further modified by the addition of NMDA. TTX+NMDA, TTX+NMDA+PTX, or GABA alone have similar effects, suggesting that, at the concentrations used, they are largely removing the inner retinal contributions. After removing the inner retinal influences, the monkey's mfERG is mainly composed of ON- and OFF-bipolar contributions, as revealed after APB and PDA were injected. The leading edge of the first negative potential (N1) is largely shaped by the initial hyperpolarization of the OFF-bipolar cells. The photoreceptors also contribute to the leading edge of N1, but this contribution is small, except in the central 6 degrees. The depolarization of the ON-bipolars and the recovery of the OFF-bipolars contribute to the leading edge of the major positive component (P1), with the recovery of the ON-bipolars being the dominant influence on the trailing edge. The waveform of the human mfERG most closely resembles the rhesus monkey's mfERG after administration of TTX. CONCLUSIONS: The monkey's mfERG is shaped by large contributions from ON- and OFF-bipolar cells, combined with both spiking and nonspiking inner retinal contributions, and a small contribution from the photoreceptors. In comparison, the human mfERG resembles the monkey's mfERG after reduction of inner retinal contributions. Based on the pharmacologic dissection of the monkey's mfERG, a model of the waveform of the human mfERG is proposed. This model suggests that the waveform can be understood as a combination of overlapping ON- and OFF-bipolar cell contributions combined with smaller contributions from inner retina and photoreceptors.  (+info)

PICK1 is required for the control of synaptic transmission by the metabotropic glutamate receptor 7. (63/617)

Both postsynaptic density and presynaptic active zone are structural matrix containing scaffolding proteins that are involved in the organization of the synapse. Little is known about the functional role of these proteins in the signaling of presynaptic receptors. Here we show that the interaction of the presynaptic metabotropic glutamate (mGlu) receptor subtype, mGlu7a, with the postsynaptic density-95 disc-large zona occludens 1 (PDZ) domain-containing protein, PICK1, is required for specific inhibition of P/Q-type Ca(2+) channels, in cultured cerebellar granule neurons. Furthermore, we show that activation of the presynaptic mGlu7a receptor inhibits synaptic transmission and this effect also requires the presence of PICK1. These results indicate that the scaffolding protein, PICK1, plays an essential role in the control of synaptic transmission by the mGlu7a receptor complex.  (+info)

Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli. (64/617)

PURPOSE: To evaluate the relative contributions of photoreceptors and postphotoreceptoral activity to the primate 32-Hz flicker electroretinogram (ERG) elicited by sine-wave, square-wave, and pulse stimuli. METHODS: Flicker 32-Hz ERGs were evoked from four adult rhesus (Macaca mulatta) monkeys using sine-wave, square-wave, and 4-ms pulse trains and xenon photostrobe flicker stimuli. All stimuli had time-averaged luminance of 2.11 log cd/m(2) and were presented on a 1.63-log cd/m(2) white background. Intravitreal injections of DL-2-amino-4-phosphonobutyric acid (APB) and cis-2,3-piperidinedicarboxylic acid (PDA) were given to block activity of ON- and OFF-bipolar cells, respectively. RESULTS: Flicker harmonic analysis showed that the fundamental frequency component provided nearly 75% of the sine-wave and square-wave ERGs versus 63% for 4-ms pulse stimuli and only 49% for strobe flicker. Strobe-flicker responses contained the greatest contribution from higher harmonic components. Removing the ON component with APB increased the fundamental component's amplitudes by more than 30% with sine-wave and square-wave ERGs but had a lesser effect on responses to 4-ms pulses and strobe flicker. When cone responses were isolated by synaptic blockade with APB+PDA, the fundamental component's amplitude was reduced to less than 20% of control for all four stimuli. Postsynaptic ON and OFF components were characterized by amplitude and phase vectors, and sine-wave and square-wave stimuli gave a large phase difference (138 degrees ) between ON and OFF components, which resulted in greater response self-cancellation than with the 4-ms pulse train (121 degrees phase difference) or for strobe flicker (118 degrees ). CONCLUSIONS: The major decrease in flicker responses after photoreceptor synaptic blockade implicates a major contribution from postphotoreceptoral activity to the fundamental flicker component, regardless of the stimulus type. Sine-wave and square-wave stimuli produced larger phase differences between ON- and OFF-pathway components, thereby causing more complete self-cancellation of postphotoreceptoral contributions and revealing slightly greater relative contribution directly from cone photoreceptors with these stimuli than with pulsed stimuli. The direct cone contribution was always small, however, and the clinical point is that 32-Hz flicker ERG amplitudes do not provide an unambiguous assessment of direct cone photoreceptor contribution with any of these stimuli.  (+info)