Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. (1/736)

The characterization of the Caenorhabditis elegans unc-47 gene recently allowed the identification of a mammalian (gamma)-amino butyric acid (GABA) transporter, presumed to be located in the synaptic vesicle membrane. In situ hybridization data in rat brain suggested that it might also take up glycine and thus represent a general Vesicular Inhibitory Amino Acid Transporter (VIAAT). In the present study, we have investigated the localization of VIAAT in neurons by using a polyclonal antibody raised against the hydrophilic N-terminal domain of the protein. Light microscopy and immunocytochemistry in primary cultures or tissue sections of the rat spinal cord revealed that VIAAT was localized in a subset (63-65%) of synaptophysin-immunoreactive terminal boutons; among the VIAAT-positive terminals around motoneuronal somata, 32.9% of them were also immunoreactive for GAD65, a marker of GABAergic presynaptic endings. Labelling was also found apposed to clusters positive for the glycine receptor or for its associated protein gephyrin. At the ultrastructural level, VIAAT immunoreactivity was restricted to presynaptic boutons exhibiting classical inhibitory features and, within the boutons, concentrated over synaptic vesicle clusters. Pre-embedding detection of VIAAT followed by post-embedding detection of GABA or glycine on serial sections of the spinal cord or cerebellar cortex indicated that VIAAT was present in glycine-, GABA- or GABA- and glycine-containing boutons. Taken together, these data further support the view of a common vesicular transporter for these two inhibitory transmitters, which would be responsible for their costorage in the same synaptic vesicle and subsequent corelease at mixed GABA-and-glycine synapses.  (+info)

Cutting edge: primary structure of the light chain of fusion regulatory protein-1/CD98/4F2 predicts a protein with multiple transmembrane domains that is almost identical to the amino acid transporter E16. (2/736)

The CD98 light chain (CD98LC) was copurified from HeLa S3 cells by an affinity chromatography using a mAb specific for the fusion regulatory protein-1 (FRP-1) which is identical to the CD98 heavy chain. On the basis of the N-terminal sequence (63 amino acids) of purified CD98LC polypeptide, we have cloned a PCR fragment (155 bp) from a HeLa S3 cDNA library and finally obtained a full cDNA clone encoding the CD98LC. Fluorescence in situ hybridization analysis using the cDNA assigned the CD98LC gene to the long arm of human chromosome 16 (16q24). The predicted amino acid sequence suggested that CD98LC is a protein with multiple transmembrane domains and is almost identical to the amino acid transporter E16. Resting monocytes and lymphocytes expressed CD98LC as analyzed by a newly isolated anti-CD98LC mAb, which showed cross-reactivity with insect Sf9 cells as well as with various mammalian cell lines.  (+info)

NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. (3/736)

Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces internalization of the general amino acid permease Gap1p and its subsequent degradation in the vacuole. An essential step in this down-regulation is Gap1p ubiquitination through a process requiring the Npi1p/Rsp5p ubiquitin ligase. We show in this report that NPI2, a second gene required for NH4+-induced down-regulation of Gap1p, codes for the ubiquitin hydrolase Doa4p/Ubp4p/Ssv7p and that NH4+-induced Gap1p ubiquitination is strongly reduced in npi2 cells. The npi2 mutation results in substitution of an aromatic amino acid located in a 33-residue sequence shared by some ubiquitin hydrolases of the Ubp family. In this mutant, as in doa4(delta) cells, the amount of free monomeric ubiquitin is at least four times lower than in wild-type cells. Both ubiquitination and down-regulation of the permease can be restored in npi2 cells by over-expression of ubiquitin. In proline-grown wild-type and npi2/doa4 cells overproducing ubiquitin, Gap1p appears to be mono-ubiquitinated at two lysine acceptor sites. Addition of NH4+ triggers rapid poly-ubiquitination of Gap1p, the poly-ubiquitin chains being specifically formed by linkage through the lysine 63 residue of ubiquitin. Gap1p is thus ubiquitinated differently from the proteins targeted by ubiquitination for proteolysis by the proteasome, but in the same manner as the uracil permease, also subject to ubiquitin-dependent endocytosis. When poly-ubiquitination through Lys63 is blocked, the Gap1p permease still undergoes NH4+-induced down-regulation, but to a lesser extent.  (+info)

The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. (4/736)

Pseudomonas aeruginosa, when deprived of oxygen, generates ATP from arginine catabolism by enzymes of the arginine deiminase pathway, encoded by the arcDABC operon. Under conditions of low oxygen tension, the transcriptional activator ANR binds to a site centered 41.5 bp upstream of the arcD transcriptional start. ANR-mediated anaerobic induction was enhanced two- to threefold by extracellular arginine. This arginine effect depended, in trans, on the transcriptional regulator ArgR and, in cis, on an ArgR binding site centered at -73.5 bp in the arcD promoter. Binding of purified ArgR protein to this site was demonstrated by electrophoretic mobility shift assays and DNase I footprinting. This ArgR recognition site contained a sequence, 5'-TGACGC-3', which deviated in only 1 base from the common sequence motif 5'-TGTCGC-3' found in other ArgR binding sites of P. aeruginosa. Furthermore, an alignment of all known ArgR binding sites confirmed that they consist of two directly repeated half-sites. In the absence of ANR, arginine did not induce the arc operon, suggesting that ArgR alone does not activate the arcD promoter. According to a model proposed, ArgR makes physical contact with ANR and thereby facilitates initiation of arc transcription.  (+info)

Yeast mutants affecting possible quality control of plasma membrane proteins. (5/736)

Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.  (+info)

Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney. (6/736)

1. The swelling induced by Na+-alanine cotransport in proximal tubule cells of the frog kidney is followed by regulatory volume decrease (RVD). This RVD is inhibited by gadolinium (Gd3+), an inhibitor of stretch-activated channels, but is independent of extracellular Ca2+. 2. In this study, the whole cell patch clamp technique was utilized to examine the effect of Na+-alanine cotransport on two previously identified volume- and Gd3+-sensitive conductances. One conductance is voltage dependent and anion selective (GVD) whilst the other is voltage independent and cation selective (GVI). 3. Addition of 5 mM L-alanine to the bathing solution increased the whole cell conductance and gave a positive (depolarizing) shift in the reversal potential (Vrev, equivalent to the membrane potential in current-clamped cells) consistent with activation of Na+-alanine cotransport. Vrev shifted from -36 +/- 4.9 to +12.9 +/- 4.2 mV (n = 15). 4. In the presence of alanine, the total whole cell conductance had several components including the cotransporter conductance and GVD and GVI. These conductances were separated using Gd3+, which inhibits both GVD and GVI, and the time dependency of GVD. Of these two volume-sensitive conductances, L-alanine elicited a specific increase in GVD, whereas GVI was unaffected. 5. The L-alanine-induced activation of GVD was significantly reduced when cells were incubated in a hypertonic bathing solution. 6. In summary, in single proximal tubule cells isolated from frog kidney, on stimulation of Na+-alanine cotransport GVD is activated, while GVI is unaffected. Taken with other evidence, this suggests that GVD is activated by cell swelling, consequent upon alanine entry, and may play a role as an anion efflux pathway during alanine-induced volume regulation.  (+info)

Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. (7/736)

Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9 +/- 1.7 and 1.7 +/- 0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.  (+info)

Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. (8/736)

A cadmium resistance gene, designated cadD, has been identified in and cloned from the Staphylococcus aureus plasmid pRW001. The gene is part of a two-component operon which contains the resistance gene cadD and an inactive regulatory gene, cadX*. A high degree of sequence similarity was observed between cadD and the cadB-like gene from S. lugdunensis, but no significant similarity was found with either cadA or cadB from the S. aureus plasmids pI258 and pII147. The positive regulatory gene cadX* is identical to cadX from pLUG10 over a stretch of 78 codons beginning at the N terminus, but it is truncated at this point and inactive. Sequence analysis showed that the cadmium resistance operon resides on a 3,972-bp element that is flanked by direct repeats of IS257. The expression of cadD in S. aureus and Bacillus subtilis resulted in low-level resistance to cadmium; in contrast, cadA and cadB from S. aureus induced higher level resistance. However, when the truncated version of cadX contained in pRW001 is complemented in trans with cadX from plasmid pLUG10, resistance increased approximately 10-fold suggesting that the cadmium resistance operons from pRW001 and pLUG10 are evolutionarily related. Moreover, the truncated version of cadX contained in pRW001 is nonfunctional and may have been generated by deletion during recombination to acquire the cadmium resistance element.  (+info)