Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii. (41/11917)

Malonyl-CoA synthetase (MCS) catalyses the formation of malonyl-CoA in a two-step reaction consisting of the adenylation of malonate with ATP followed by malonyl transfer from malonyl-AMP to CoA. In order to identify amino acid residues essential for each step of the enzyme, catalysis based on chemical modification and database analysis, Arg-168, Lys-170, and His-206 were selected for site-directed mutagenesis. Glutathione-S-transferase-fused enzyme (GST-MCS) was constructed and mutagenized to make R168G, K170M, R168G/K170M and H206L mutants, respectively. The MCS activity of soluble form GST-MCS was the same as that of wild-type MCS. Circular dichroism spectra for the four mutant enzymes were nearly identical to that for the GST-MCS, indicating that Arg-168, Lys-170 and His-206 are not important for conformation but presumably for substrate binding and/or catalysis. HPLC analysis of products revealed that the intermediate malonyl-AMP is not accumulated during MCS catalysis and that none of the mutant enzymes accumulated it either. Kinetic analysis of the mutants revealed that Lys-170 and His-206 play a critical role for ATP binding and the formation of malonyl-AMP, whereas Arg-168 is critical for formation of malonyl-CoA and specificity for malonyl-AMP. Molecular modelling based on the crystal structures of luciferase and gramicidin S synthetase 1 provided MCS structure which could fully explain all these biochemical data even though the MCS model was generated by comparative modelling.  (+info)

Polycationic peptides from diatom biosilica that direct silica nanosphere formation. (42/11917)

Diatom cell walls are regarded as a paradigm for controlled production of nanostructured silica, but the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. A set of polycationic peptides (called silaffins) isolated from diatom cell walls were shown to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Silaffins contain covalently modified lysine-lysine elements. The first lysine bears a polyamine consisting of 6 to 11 repeats of the N-methyl-propylamine unit. The second lysine was identified as epsilon-N,N-dimethyl-lysine. These modifications drastically influence the silica-precipitating activity of silaffins.  (+info)

An adenosine deaminase that generates inosine at the wobble position of tRNAs. (43/11917)

Several transfer RNAs (tRNAs) contain inosine (I) at the first position of their anticodon (position 34); this modification is thought to enlarge the codon recognition capacity during protein synthesis. The tRNA-specific adenosine deaminase of Saccharomyces cerevisiae that forms I(34) in tRNAs is described. The heterodimeric enzyme consists of two sequence-related subunits (Tad2p/ADAT2 and Tad3p/ADAT3), both of which contain cytidine deaminase (CDA) motifs. Each subunit is encoded by an essential gene (TAD2 and TAD3), indicating that I(34) is an indispensable base modification in elongating tRNAs. These results provide an evolutionary link between the CDA superfamily and RNA-dependent adenosine deaminases (ADARs/ADATs).  (+info)

Structure/function relationship of activating Ly-49D and inhibitory Ly-49G2 NK receptors. (44/11917)

Murine NK cells express Ly-49 family receptors capable of either inhibiting or activating lytic function. The overlapping patterns of expression of the various receptors have complicated their precise biochemical characterization. Here we describe the use of the Jurkat T cell line as the model for the study of Ly-49s. We demonstrate that Ly-49D is capable of delivering activation signals to Jurkat T cells even in the absence of the recently described Ly-49D-associated chain, DAP-12. Ly-49D signaling in Jurkat leads to tyrosine phosphorylation of TCRzeta and requires Syk/Zap70 family kinases and arginine 54 of Ly-49D, suggesting that Ly-49D signals via association with TCRzeta. Coexpression studies in 293-T cells confirmed the ability of Ly-49D to associate with TCRzeta. In addition, we have used this model to study the functional interactions between an inhibitory Ly-49 (Ly-49G2) and an activating Ly-49 (Ly-49D). Ly-49G2 blocks activation mediated by Ly-49D in an immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent manner. In contrast, Ly-49G2 was incapable of inhibiting activation by the TCR even though human killer cell inhibitory receptor (KIR) (KIR3DL2(GL183)) effectively inhibits TCR. Both the ability of Ly-49G2 to block Ly-49D activation and the failure of Ly-49G2 to inhibit TCR signaling were confirmed in primary murine NK cells and NK/T cells, respectively. These data demonstrate the dominant effects of the inhibitory receptors over those that activate and suggest an inability of the Ly-49 type II inhibitory receptors to efficiently inhibit type I transmembrane receptor signaling in T cells and NK cells.  (+info)

Spire contains actin binding domains and is related to ascidian posterior end mark-5. (45/11917)

Spire is a maternal effect locus that affects both the dorsal-ventral and anterior-posterior axes of the Drosophila egg and embryo. It is required for localization of determinants within the developing oocyte to the posterior pole and to the dorsal anterior corner. During mid-oogenesis, spire mutants display premature microtubule-dependent cytoplasmic streaming, a phenotype that can be mimicked by pharmacological disruption of the actin cytoskeleton with cytochalasin D. Spire has been cloned by transposon tagging and is related to posterior end mark-5, a gene from sea squirts that encodes a posteriorly localized mRNA. Spire mRNA is not, however, localized to the posterior pole. SPIRE also contains two domains with similarity to the actin monomer-binding WH2 domain, and we demonstrate that SPIRE binds to actin in the interaction trap system and in vitro. In addition, SPIRE interacts with the rho family GTPases RHOA, RAC1 and CDC42 in the interaction trap system. Thus, our evidence supports the model that SPIRE links rho family signaling to the actin cytoskeleton.  (+info)

The lin-11 LIM domain transcription factor is necessary for morphogenesis of C. elegans uterine cells. (46/11917)

The Caenorhabditis elegans hermaphrodite egg-laying system comprises several tissues, including the uterus and vulva. lin-11 encodes a LIM domain transcription factor needed for certain vulval precursor cells to divide asymmetrically. Based on lin-11 expression studies and the lin-11 mutant phenotype, we find that lin-11 is also required for C. elegans uterine morphogenesis. Specifically, lin-11 is expressed in the ventral uterine intermediate precursor (pi) cells and their progeny (the utse and uv1 cells), which connect the uterus to the vulva. Like (pi) cell induction, the uterine lin-11 expression responds to the uterine anchor cell and the lin-12-encoded receptor. In wild type animals, the utse, which forms the planar process at the uterine-vulval interface, fuses with the anchor cell. We found that, in lin-11 mutants, utse differentiation was abnormal, the utse failed to fuse with the anchor cell and a functional uterine-vulval connection was not made. These findings indicate that lin-11 is essential for uterine-vulval morphogenesis.  (+info)

spen encodes an RNP motif protein that interacts with Hox pathways to repress the development of head-like sclerites in the Drosophila trunk. (47/11917)

Drosophila has eight Hox proteins, and they require factors acting in parallel to regulate different segmental morphologies. Here we find that the Drosophila gene split ends (spen), has a homeotic mutant phenotype, and appears to encode such a parallel factor. Our results indicate that spen plays two important segment identity roles. One is to promote sclerite development in the head region, in parallel with Hox genes; the other is to cooperate with Antennapedia and teashirt to suppress head-like sclerite development in the thorax. Our results also indicate that without spen and teashirt functions, Antennapedia loses its ability to specify thoracic identity in the epidermis. spen transcripts encode extraordinarily large protein isoforms (approx. 5,500 amino acids), which are concentrated in embryonic nuclei. Both Spen protein isoforms and Spen-like proteins in other animals possess a clustered repeat of three RNP (or RRM) domains, as well as a conserved motif of 165 amino acids (SPOC domain) at their C-termini. Spen is the only known homeotic protein with RNP binding motifs, which indicates that splicing, transport, or other RNA regulatory steps are involved in the diversification of segmental morphology. Previous studies by Dickson and others (Dickson, B. J., Van Der Straten, A., Dominguez, M. and Hafen, E. (1996). Genetics 142, 163-171) identified spen as a gene that acts downstream of Raf to suppress Raf signaling in a manner similar to the ETS transcription factor Aop/Yan. This raises the intriguing possibility that the Spen RNP protein might integrate signals from both the Raf and Hox pathways.  (+info)

The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. (48/11917)

The tissue polarity genes control the polarity of hairs, bristles and ommatidia in the adult epidermis of Drosophila. We report here the identification of a new tissue polarity gene named starry night (stan). Mutations in this essential gene alter the polarity of cuticular structures in all regions of the adult body. The detailed polarity phenotype of stan on the wing suggested that it is most likely a component of the frizzled (fz) pathway. Consistent with this hypothesis, stan appears to be downstream of and required for fz function. We molecularly cloned stan and found that it encodes a huge protocadherin containing nine cadherin motifs, four EGF-like motifs, two laminin G motifs, and seven transmembrane domains. This suggests that Stan functions in signal reception, perhaps together with Fz.  (+info)