Scanning electron microscopy of the lateral cell surfaces of rat incisor ameloblasts. (1/196)

Dry dissected rat incisor ameloblasts studied in the scanning electron microscope show remarkable specializations of their lateral surfaces. Four or five cycles of a change from a surface with longitudinal gutterlike folds associated with large intercellular spaces, to one with microvilli and reduced intercellular spaces, are found along the length of the lower incisor maturation zone. It is argued that these changes indicate cyclical activity in maturation ameloblasts.  (+info)

Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. (2/196)

Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.  (+info)

Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis. (3/196)

About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.  (+info)

Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. (4/196)

The continuously growing mouse incisor is an excellent model to analyze the mechanisms for stem cell lineage. We designed an organ culture method for the apical end of the incisor and analyzed the epithelial cell lineage by 5-bromo-2'-deoxyuridine and DiI labeling. Our results indicate that stem cells reside in the cervical loop epithelium consisting of a central core of stellate reticulum cells surrounded by a layer of basal epithelial cells, and that they give rise to transit-amplifying progeny differentiating into enamel forming ameloblasts. We identified slowly dividing cells among the Notch1-expressing stellate reticulum cells in specific locations near the basal epithelial cells expressing lunatic fringe, a secretory molecule modulating Notch signaling. It is known from tissue recombination studies that in the mouse incisor the mesenchyme regulates the continuous growth of epithelium. Expression of Fgf-3 and Fgf-10 were restricted to the mesenchyme underlying the basal epithelial cells and the transit-amplifying cells expressing their receptors Fgfr1b and Fgfr2b. When FGF-10 protein was applied with beads on the cultured cervical loop epithelium it stimulated cell proliferation as well as expression of lunatic fringe. We present a model in which FGF signaling from the mesenchyme regulates the Notch pathway in dental epithelial stem cells via stimulation of lunatic fringe expression and, thereby, has a central role in coupling the mitogenesis and fate decision of stem cells.  (+info)

Spatial and temporal activity of the dentin sialophosphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. (5/196)

Dentin sialoprotein and dentin phosphoprotein are non-collagenous proteins that are cleavage products of dentin sialophosphoprotein (DSPP). Although these two protein products are believed to have a crucial role in the process of tooth mineralization, their precise biological functions and the molecular mechanisms of gene regulation are not clearly understood. To understand such functions, we have developed a transgenic mouse model expressing a reporter gene (lacZ) under the control of approximately 6 kb upstream sequences of Dspp. The transgenic fusion protein was designed to reside within the cells to facilitate the precise identification of cell type and developmental stages at which the Dspp-lacZ gene is expressed. The results presented in this report demonstrate: (a) the 6 kb upstream sequences of Dspp have the necessary regulatory elements to direct the tissue specific expression of the transgene similar to endogenous Dspp, (b) both odontoblasts and ameloblasts exhibit transgene expression in a differentiation dependent manner, and (c) a differential regulation of the transgene in odontoblasts and ameloblasts occurs during tooth development and mineralization.  (+info)

Subtilisin-like proprotein convertase PACE4 (SPC4) is a candidate processing enzyme of bone morphogenetic proteins during tooth formation. (6/196)

The temporospatial expression of PACE4, a member of the mammalian subtilisin-like proprotein convertase family, in the developing rat molar tooth was determined by in situ hybridization. At the initiation stage of tooth development, PACE4 mRNA was weakly expressed in the dental lamina, whereas the mesenchymal cells intensely expressed the PACE4 transcript. At the bud stage, high-level expression of PACE4 mRNA was found in the dental epithelium and condensed dental mesenchyme. Its expression became more localized in the differentiating ameloblasts during cap and early bell stages. In the newborn rats, PACE4 mRNA was localized in the ameloblasts and odontoblasts, but its expression became weaker with advancing development, showing apparent association with the differentiation and establishment of functional ameloblasts and odontoblasts. These expression patterns of PACE4 were very similar to those of several bone morphogenetic proteins (BMPs) reported previously. Because BMPs, which are primarily involved in the morphogenesis in tooth formation, are synthesized as inactive precursors and activated by limited proteolysis at the consensus Arg-X-X-Arg maturation site, the present observations suggest that PACE4 is possibly a candidate proBMP convertase that acts during tooth formation.  (+info)

Transcription factor Sp3 is essential for post-natal survival and late tooth development. (7/196)

Sp3 is a ubiquitously expressed transcription factor closely related to Sp1 (specificity protein 1). We have disrupted the mouse Sp3 gene by homologous recombination. Sp3-deficient embryos are growth retarded and invariably die at birth of respiratory failure. The cause for the observed breathing defect remains obscure since only minor morphological alterations were observed in the lung, and surfactant protein expression is indistinguishable from that in wild-type mice. Histological examinations of individual organs in Sp3(-/-) mice show a pronounced defect in late tooth formation. In Sp3 null mice, the dentin/enamel layer of the developing teeth is impaired due to the lack of ameloblast-specific gene products. Comparison of the Sp1 and Sp3 knockout phenotype shows that Sp1 and Sp3 have distinct functions in vivo, but also suggests a degree of functional redundancy.  (+info)

Calbindin D28k-like immunoreactivity during the formation of the enamel-free area in the rat molar teeth. (8/196)

Previous studies have demonstrated the presence of calbindin D28k in the ameloblasts derived from the inner enamel epithelium. The occlusal surfaces of the rodent molars partly lack the enamel covering, which is referred to as enamel-free area (EFA). In the present study, we compared the immunohistochemical localization of calbindin D28k-like immunoreactivity (CB-LI) in the cells at the EFA (EFA cells) and ameloblasts of the rat molar teeth at the light microscopic level. CB-LI was strong in the ameloblasts of the presecretory through the protective stages, while it was faint at the late secretory to transitional stages. However, some mature ameloblasts lacked the immunoreactivity. On the other hand, the majority of EFA cells showed distinct polarization and elongation that were absent in few cells at the early stage of EFA formation. At all stages, the EFA cells adjacent to the ameloblasts showed CB-LI, however, some cells adjacent to the mature ameloblasts lacked the reaction. Intensive CB-LI was demonstrated in EFA cells at the reduced enamel epithelium. These immunohistochemical findings suggest EFA cells have cytochemical properties similar to those of ameloblasts.  (+info)