Horizontal cell responses in the retina of the larval tiger salamander. (73/599)

The responses to light of horizontal cells were recorded intracellularly in the retina of the larval tiger salamander. 2. All the units studied had a large summation area and were hyperpolarized by circles of light of any wave-length centred on the recording electrode, but two types could be distinguished according to the properties of their receptive fields. Type A units were hyperpolarized following illumination of any portion of their receptive field, while type B units were not hyperpolarized by illumination of their surround unless the centre was simultaneously illuminated, stimulation of the surround alone resulting in either a small depolarization or virtually no response. 3. Procion yellow injections showed that type A responses are recorded from thick and long processes not directly continuous with an identifiable cell body, while type B responses originate from the cell body of cells that send very fine and tortuous processes towards the receptors. The histological observations also suggested that the type A units represent expansions or swellings of one or more of the fine processes originating from the type B units. Therefore, it seems possible that both types of units are just different parts of a single kind of horizontal cell, and that a majority of the dye injections failed to stain them simultaneously because of the small diameter of the connecting process. 4. The large summation area of type A units can be explained, just as for horizontal cells in other retinae, by supposing that they are electrically coupled to other units of the same type. The receptive field properties of type B units, however, can only be partly explained by electrical coupling, and then only if the existence of voltage-dependent junctions is postulated. Instead, the reversal of the polarity of responses to an annulus of light during steady illumination of the centre, plus the available electron microscopic evidence, suggest that the effect of the surround on the type B units is due to a chemical synaptic impingement from the type A units.  (+info)

A non-excitatory paradigm of glutamate toxicity. (74/599)

Retinal ganglion cells are driven by glutamatergic synapses, but they are also very susceptible to glutamate toxicity. Whereas the conventional excitotoxicity model of glutamate-induced cell death requires membrane depolarization, we have found that glutamate toxicity need not be linked with excitation. A large subset of ganglion cells possesses high-affinity kainate receptors that are calcium permeable. At 1-5 microM, kainate produced elevation of internal calcium but did not significantly depolarize ganglion cells. This low concentration of kainate caused ganglion cell death, which could be inhibited by specific kainate receptor antagonists. The toxic effect of kainate may be associated with calcium influx, because toxicity was reduced by polyamines that suppress calcium influx and by an inhibitor of calcium phosphatase. Thus activation of ionotropic glutamate receptors can produce neurotoxicity uncoupled from neuroexcitation.  (+info)

Mechanism of generation of spontaneous miniature outward currents (SMOCs) in retinal amacrine cells. (75/599)

A subtype of retinal amacrine cells displayed a distinctive array of K(+) currents. Spontaneous miniature outward currents (SMOCs) were observed in the narrow voltage range of -60 to -40 mV. Depolarizations above approximately -40 mV were associated with the disappearance of SMOCs and the appearance of transient (I(to)) and sustained (I(so)) outward K(+) currents. I(to) appeared at about -40 mV and its apparent magnitude was biphasic with voltage, whereas I(so) appeared near -30 mV and increased linearly. SMOCs, I(to), and a component of I(so) were Ca(2+) dependent. SMOCs were spike shaped, occurred randomly, and had decay times appreciably longer than the time to peak. In the presence of cadmium or cobalt, SMOCs with pharmacologic properties identical to those seen in normal Ringer's could be generated at voltages of -20 mV and above. Their mean amplitude was Nernstian with respect to [K(+)](ext) and they were blocked by tetraethylammonium. SMOCs were inhibited by iberiotoxin, were insensitive to apamin, and eliminated by nominally Ca(2+)-free solutions, indicative of BK-type Ca(2+)-activated K(+) currents. Dihydropyridine Ca(2+) channel antagonists and agonists decreased and increased SMOC frequencies, respectively. Ca(2+) permeation through the kainic acid receptor had no effect. Blockade of organelle Ca(2+) channels by ryanodine, or intracellular Ca(2+) store depletion with caffeine, eradicated SMOCs. Internal Ca(2+) chelation with 10 mM BAPTA eliminated SMOCs, whereas 10 mM EGTA had no effect. These results suggest a mechanism whereby Ca(2+) influx through L-type Ca(2+) channels and its subsequent amplification by Ca(2+)-induced Ca(2+) release via the ryanodine receptor leads to a localized elevation of internal Ca(2+). This amplified Ca(2+) signal in turn activates BK channels in a discontinuous fashion, resulting in randomly occurring SMOCs.  (+info)

Calcium-induced transitions between the spontaneous miniature outward and the transient outward currents in retinal amacrine cells. (76/599)

Spontaneous miniature outward currents (SMOCs) occur in a subset of retinal amacrine cells at membrane potentials between -60 and -40 mV. At more depolarized potentials, a transient outward current (I(to)) appears and SMOCs disappear. Both SMOCs and the I(to) are K(+) currents carried by BK channels. They both arise from Ca(2+) influx through high voltage-activated (HVA) Ca(2+) channels, which stimulates release of internal Ca(2+) from caffeine- and ryanodine-sensitive stores. An increase in Ca(2+) influx resulted in an increase in SMOC frequency, but also led to a decline in SMOC mean amplitude. This reduction showed a temporal dependence: the effect being greater in the latter part of a voltage step. Thus, Ca(2+) influx, although required to generate SMOCs, also produced a negative modulation of their amplitudes. Increasing Ca(2+) influx also led to a decline in the first latency to SMOC occurrence. A combination of these effects resulted in the disappearance of SMOCs, along with the concomitant appearance of the I(to) at high levels of Ca(2+) influx. Therefore, low levels of Ca(2+) influx, arising from low levels of activation of the HVA Ca(2+) channels, produce randomly occurring SMOCs within the range of -60 to -40 mV. Further depolarization leads to greater activation of the HVA Ca(2+) channels, larger Ca(2+) influx, and the disappearance of discontinuous SMOCs, along with the appearance of the I(to). Based on their characteristics, SMOCs in retinal neurons may function as synaptic noise suppressors at quiescent glutamatergic synapses.  (+info)

Segregation and integration of visual channels: layer-by-layer computation of ON-OFF signals by amacrine cell dendrites. (77/599)

The visual system analyzes images through parallel channels, and our data suggest that the first set of parallel representations of the visual world is embodied in the inner plexiform layer (IPL) of the retina, in which light-evoked excitatory inputs of the ON and OFF bipolar cells to amacrine cells (ACs) are organized in a layer-by-layer manner. Approximately 30% of ACs have narrowly monostratified dendrites in 1 of the 10 strata of the IPL, and they receive segregated bipolar cell inputs: the light-evoked excitatory cation current, DeltaI(C), in strata 1, 2, and 4 is OFF (predominantly mediated by the OFF bipolar cells), the current in strata 3 and 7-10 is ON (predominantly mediated by ON bipolar cells), and the current in strata 5 and 6 is ON-OFF (mediated by both ON and OFF bipolar cells). The remaining 70% of ACs have broadly monostratified, multistratified, or diffuse dendrites, and they integrate bipolar cell signals through layer-by-layer summation: ACs with dendrites ramified in multiple strata exhibit DeltaI(C)s that are sums of DeltaI(C)s of individual strata. The light-evoked inhibitory chloride current, DeltaI(Cl), in strata 1, 2, and 4-6 is ON-OFF (mediated predominantly by ON-OFF ACs or ON ACs plus OFF ACs), and the DeltaI(Cl) in strata 3 and 7-10 is ON (mediated predominantly by ON ACs). This indicates that the amacrine-amacrine inhibitory synaptic circuitry in the IPL is asymmetrical in favor of the ON channels.  (+info)

Cardiac effects of hypoxia in the neotenous tiger salamander Ambystoma tigrinum. (78/599)

The aquatic form of the tiger salamander Ambystoma tigrinum lives in high-altitude ponds and is exposed to a hypoxic environment that may be either chronic or intermittent. In many animal species, exposure to hypoxia stimulates cardiac output and is followed by an increase in cardiac mass. The working hypothesis of the present study was that the hearts of these aquatic salamanders exposed to 10-14 days of 5 % oxygen in a laboratory setting would become larger and would differentially express proteins that would help confer tolerance to hypoxia. During exposure to hypoxia, cardiac output increased, as did hematocrit. Cardiac mass also increased, but mitotic figures were not detected in the cardiac myocytes of colchicine-injected animals. The mass increase was probably due to hypertrophy, although a very slow rate of hyperplasia cannot be ruled out. Representational difference analysis indicated that at least 14 mRNAs were expressed in hearts from the hypoxic animals that were not expressed in hearts from normoxic animals. The differentially expressed genes were cloned and sequenced and confirmed as coming from the ventricles of the hypoxic salamanders. Genes differentially expressed include mitochondrial genes and genes for elongation factor 2, a protein synthesis gene. The mechanical performance of buffer-perfused hearts isolated from normoxic and hypoxic animals did not differ. Acute responses to hypoxia were also measured. The rate of oxygen consumption of unanesthetized salamanders in metabolism chambers decreased when chamber oxygen concentration was reduced below 12 % oxygen. At a chamber oxygen concentration of 4-6 %, the rate of oxygen consumption of the salamanders was reduced to approximately one-third of the normoxic rate.  (+info)

A novel striated tropomyosin incorporated into organized myofibrils of cardiomyocytes in cell and organ culture. (79/599)

Striated muscle tropomyosin is classically described as consisting of 10 exons, 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b, in both skeletal and cardiac muscle. A novel isoform found in embryonic axolotl heart maintains exon 9a/b of striated muscle but also has a smooth muscle exon 2a instead of exon 2b. Translation and subsequent incorporation into organized myofibrils, with both isoforms, was demonstrated with green fluorescent protein fusion protein construct. Mutant axolotl hearts lack sufficient tropomyosin in the ventricle and this smooth/striated chimeric tropomyosin was sufficient to replace the missing tropomyosin and form organized myofibrils.  (+info)

A mechanogated nonselective cation channel in proximal tubule that is ATP sensitive. (80/599)

Ion channels that are gated in response to membrane deformation or "stretch" are empirically designated stretch-activated channels. Here we describe a stretch-activated nonselective cation channel in the basolateral membrane (BLM) of the proximal tubule (PT) that is nucleotide sensitive. Single channels were studied in cell-intact and cell-free patches from the BLM of PT cells that maintain their epithelial polarity. The limiting inward Cs+ conductance is ~28 pS, and channel activity persists after excision into a Ca2+- and ATP-free bath. The stretch-dose response is sigmoidal, with half-maximal activation of about -19 mmHg at -40 mV, and the channel is activated by depolarization. The inward conductance sequence is: NH ~ Cs+ ~ Rb+ > K+ ~ Na+ ~ Li+ > Ca2+ ~ Ba2+ > N-methyl-D-glucamine ~ tetraethylammonium. The venom of the common Chilean tarantula, Grammostola spatulata, completely blocks channel activity in cell-attached patches. Hypotonic swelling reversibly activates the channel. Intracellular ATP concentration ([ATP]i) reversibly blocks the channel (inhibitory constant approximately 0.48 mM), suggesting that channel function is coupled to the metabolic state of the cell. We conclude that this channel may function as a Ca2+ entry pathway and/or be involved in regulation of cell volume. We speculate this channel may be important when [ATP]i is depleted, as occurs during periods of increased transepithelial transport or with ischemic injury.  (+info)