A visual pigment expressed in both rod and cone photoreceptors. (65/599)

Rods and cones contain closely related but distinct G protein-coupled receptors, opsins, which have diverged to meet the differing requirements of night and day vision. Here, we provide evidence for an exception to that rule. Results from immunohistochemistry, spectrophotometry, and single-cell RT-PCR demonstrate that, in the tiger salamander, the green rods and blue-sensitive cones contain the same opsin. In contrast, the two cells express distinct G protein transducin alpha subunits: rod alpha transducin in green rods and cone alpha transducin in blue-sensitive cones. The different transducins do not appear to markedly affect photon sensitivity or response kinetics in the green rod and blue-sensitive cone. This suggests that neither the cell topology or the transducin is sufficient to differentiate the rod and the cone response.  (+info)

Transmission of the Ambystoma tigrinum virus to alternative hosts. (66/599)

Ambystoma tigrinum virus (ATV) is a lethal virus originally isolated from Sonora tiger salamanders Ambystoma tigrinum stebbinsi in the San Rafael Valley in southern Arizona. USA. ATV is implicated in several salamander epizootics. We attempted to transmit ATV experimentally to fish and amphibians by injection, water bath exposure, or feeding to test whether ATV can cause clinical signs of infection or be recovered from exposed individuals that do not show clinical signs. Cell culture and polymerase chain reaction of the viral major capsid protein gene were used for viral detection. Salamanders and newts became infected with ATV and the virus was recovered from these animals, but virus could not be recovered from any of the frogs or fish tested. These results suggest that ATV may only infect urodeles and that fish and frogs may not be susceptible to ATV infection.  (+info)

Specification of pharyngeal endoderm is dependent on early signals from axial mesoderm. (67/599)

The development of taste buds is an autonomous property of the pharyngeal endoderm, and this inherent capacity is acquired by the time gastrulation is complete. These results are surprising, given the general view that taste bud development is nerve dependent, and occurs at the end of embryogenesis. The pharyngeal endoderm sits at the dorsal lip of the blastopore at the onset of gastrulation, and because this taste bud-bearing endoderm is specified to make taste buds by the end of gastrulation, signals that this tissue encounters during gastrulation might be responsible for its specification. To test this idea, tissue contacts during gastrulation were manipulated systematically in axolotl embryos, and the subsequent ability of the pharyngeal endoderm to generate taste buds was assessed. Disruption of both putative planar and vertical signals from neurectoderm failed to prevent the differentiation of taste buds in endoderm. However, manipulations of contact between presumptive pharyngeal endoderm and axial mesoderm during gastrulation indicate that signals from axial mesoderm (the notochord and prechordal mesoderm) specify the pharyngeal endoderm, conferring upon the endoderm the ability to autonomously differentiate taste buds. These findings further emphasize that despite the late differentiation of taste buds, the tissue-intrinsic mechanisms that generate these chemoreceptive organs are set in motion very early in embryonic development.  (+info)

Temporal contrast adaptation in salamander bipolar cells. (68/599)

This work investigates how the light responses of salamander bipolar cells adapt to changes in temporal contrast: changes in the depth of the temporal fluctuations in light intensity about the mean. Contrast affected the sensitivity of bipolar cells but not of photoreceptors or horizontal cells, suggesting that adaptation occurred in signal transfer from photoreceptors to bipolars. This suggestion was confirmed by recording from photoreceptor-bipolar pairs and observing a direct dependence of the gain of signal transfer on the contrast of the light input. After an increase in contrast, the onset of adaptation in the bipolar cell had a time constant of 1-2 sec, similar to a fast component of contrast adaptation in the light responses of retinal ganglion cells (Kim and Rieke, 2001). Contrast adaptation was mediated by processes in the dendrites of both on and off bipolars. The functional properties of adaptation differed for the two bipolar types, however, with contrast having a much more pronounced effect on the kinetics of the responses of off cells than on cells.  (+info)

Effects of hypoxia on egg capsule conductance in Ambystoma (Class Amphibia, Order Caudata). (69/599)

Aquatic amphibian eggs frequently encounter hypoxic conditions that have the potential to limit oxygen uptake and thereby slow embryonic development and hatching. Oxygen limitation might be avoided if egg capsule surface area and oxygen conductance increased in response to hypoxia. We investigated this possibility in two salamander species, Ambystoma annulatum and Ambystoma talpoideum. The effective surface area of egg capsules increased in response to hypoxia, which increased the conductance for oxygen and enhanced oxygen transport. The ability of amphibian eggs to adjust their conductance in response to oxygen availability may increase survival in hypoxic environments.  (+info)

Differentiation in vitro of innervated tail regenerates in larval Ambystoma. (70/599)

Larval Ambystoma tail regenerates, innervated by the intact spinal cord, were cultured with their epidermal covering in modified Parker's medium (CMRL-1415) and the morphological integrity of the explanted regenerates was maintained with consistent success. The results show that the larval urodele tail blastema is capable of undergoing growth and differentiation when isolated in vitro and regeneration follows the normal in vivo pattern. A diffuse aggregate of blastema cells, which extended caudally from the cut end of the notochord at the time of explantation, underwent differentiation in vitro in the presence of the regenerating spinal cord. The importance of the nerve in regeneration is discussed in relation to the in vitro system.  (+info)

Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. (71/599)

Members of the fibroblast growth factor (FGF) family of molecules are critical to limb outgrowth. Here, we examine the expression of Fgfs in three types of limbs-embryonic (developing), mature (differentiated), and regenerating-as well as in the surrounding non-limb tissues in the Mexican axolotl, Ambystoma mexicanum. We have previously cloned partial cDNAs of Fgf4, 8, and 10 from the axolotl (Christensen et al., 2001); the complete Fgf10 cDNA sequence is presented here. Axolotl Fgf10 showed deduced amino acid sequence identity with all other vertebrate Fgf10 coding sequences of >62%, and also included conserved 5' and 3' untranslated regions in nucleotide sequence comparisons. Semiquantitative reverse transcriptase-polymerase chain reaction showed that fibroblast growth factors are differentially expressed in axolotl limbs. Only Fgf8 and 10 were highly expressed during axolotl limb development, although Fgf4, 8, and 10 are all highly expressed during limb development of other vertebrates. Fgf4 expression, however, was highly expressed in the differentiated salamander limb, whereas expression levels of Fgf8 and 10 decreased. Expression levels of Fgf8 and 10 then increased during limb regeneration, whereas Fgf4 expression was completely absent. In addition, axolotl limb regeneration contrasted to limb development of other vertebrates in that Fgf8 did not seem to be as highly expressed in the distal epithelium; rather, its highest expression was found in the blastema mesenchyme. Finally, we investigated the expression of these Fgfs in non-limb tissues. The Fgfs were clearly expressed in developing flank tissue and then severely downregulated in mature flank tissue. Differential Fgf expression levels in the limb and shoulder (limb field) versus in the flank (non-limb field) suggest that FGFs may be instrumental during limb field specification as well as instrumental in maintaining the salamander limb in a state of preparation for regeneration.  (+info)

Non-linear, high-gain and sustained-to-transient signal transmission from rods to amacrine cells in dark-adapted retina of Ambystoma. (72/599)

In darkness, On-Off amacrine cells (ACs) of the tiger salamander retina exhibited large spontaneous transient depolarizing potentials (sTDPs) with average peak amplitude of 5.05 +/- 2.5 mV and average frequency of 0.42 +/- 0.25 s(-1). Under voltage-clamp conditions the cell displayed large spontaneous postsynaptic currents (sPSCs) with average peak amplitude of 98 +/- 39 pA and average frequency of 0.45 +/- 0.22 s(-1). To a light step, ACs gave rise to a transient 'On' response at the light onset and a transient 'Off' response at light offset, followed by a train of TDPs ('After' response). Near the response threshold (0.3 activated rhodopsin molecules per rod per second), light-evoked TDPs (leTDPs) of similar amplitude and kinetics as the large sTDPs observed in darkness were seen, and about half of these leTDPs elicited a regenerative potential (RP). Brighter light steps gave rise to more leTDPs and higher rates of RPs in the On, Off and After responses. Within the linear response range of the rods, the AC response was non-linear, with the highest gain (676 +/- 429) near the dark potential. The amplitude of Off responses increased with the duration of the light step, and ACs may use this to encode speeds of moving stimuli: the faster the light object moves, the smaller the AC Off response. Moreover, the number of leTDPs in the AC After response increased with light intensity, and the onset of the After response coincides with bipolar cell tail response recovery. One possible origin of the large sTDPs and leTDPs is the spontaneous and depolarization-induced regenerative calcium potentials (RCaPs) in bipolar cell synaptic terminals. RCaPs in bipolar cell synaptic terminals cause transient glutamate release that results in the sTDPs in darkness, and leTDPs in On, Off and After responses in ACs.  (+info)