Apoptotic cell death in neurons and glial cells: implications for Alzheimer's disease. (33/11292)

It is now generally accepted that massive neuronal death due to oxidative stress is a common characteristic of brains in neurodegenerative diseases. Recently, numerous apoptosis-regulating factors and multiple pathways have been identified, and apoptotic cell death has been implicated in neuronal loss in Alzheimer's disease. Although glial cells are more resistant to oxidative stress than neurons, extensive oxidative stress seems to cause apoptotic cell death in glial cells. In fact, signs of apoptosis are observed in both neurons and glial cells in the brains of patients with Alzheimer's disease. This review summarizes current findings regarding apoptotic processes and discusses the possible involvement of apoptosis-regulating factors in the pathology of Alzheimer's disease.  (+info)

EEG findings in dementia with Lewy bodies and Alzheimer's disease. (34/11292)

OBJECTIVES: To evaluate the role of the EEG in the diagnosis of dementia with Lewy bodies (DLB). METHODS: Standard EEG recordings from 14 patients with DLB confirmed at postmortem were examined and were compared with the records from 11 patients with Alzheimer's disease confirmed at postmortem RESULTS: Seventeen of the total of 19 records from the patients with DLB were abnormal. Thirteen showed loss of alpha activity as the dominant rhythm and half had slow wave transient activity in the temporal lobe areas. This slow wave transient activity correlated with a clinical history of loss of consciousness. The patients with Alzheimer's disease were less likely to show transient slow waves and tended to have less marked slowing of dominant rhythm. CONCLUSIONS: The greater slowing of the EEG in DLB than in Alzheimer's disease may be related to a greater loss of choline acetyltransferase found in DLB. Temporal slow wave transients may be a useful diagnostic feature in DLB and may help to explain the transient disturbance of consciousness which is characteristic of the disorder.  (+info)

Calpain inhibitor I increases beta-amyloid peptide production by inhibiting the degradation of the substrate of gamma-secretase. Evidence that substrate availability limits beta-amyloid peptide production. (35/11292)

The calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) has been reported to have complex effects on the production of the beta-amyloid peptide (Abeta). In this study, the effects of ALLN on the processing of the amyloid precursor protein (APP) to Abeta were examined in 293 cells expressing APP or the C-terminal 100 amino acids of APP (C100). In cells expressing APP or low levels of C100, ALLN increased Abeta40 and Abeta42 secretion at low concentrations, decreased Abeta40 and Abeta42 secretion at high concentrations, and increased cellular levels of C100 in a concentration-dependent manner by inhibiting C100 degradation. Low concentrations of ALLN increased Abeta42 secretion more dramatically than Abeta40 secretion. ALLN treatment of cells expressing high levels of C100 did not alter cellular C100 levels and inhibited Abeta40 and Abeta42 secretion with similar IC50 values. These results suggest that C100 can be processed both by gamma-secretase and by a degradation pathway that is inhibited by low concentrations of ALLN. The data are consistent with inhibition of gamma-secretase by high concentrations of ALLN but do not support previous assertions that ALLN is a selective inhibitor of the gamma-secretase producing Abeta40. Rather, Abeta42 secretion may be more dependent on C100 substrate concentration than Abeta40 secretion.  (+info)

Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. (36/11292)

Cholinergic deficits are one of the most consistent neuropathological landmarks in Alzheimer's disease (AD). We have examined transgenic mouse models (PS1M146L, APPK670N,M671L) and a doubly transgenic line (APPK670N,M671L + PS1M146L) that overexpress mutated AD-related genes [presenilin-1 (PS1) and the amyloid precursor protein (APP)] to investigate the effect of AD-related gene overexpression and/or amyloidosis on cholinergic parameters. The size of the basal forebrain cholinergic neurons and the pattern of cholinergic synapses in the hippocampus and cerebral cortex were revealed by immunohistochemical staining for choline acetyltransferase and the vesicular acetylcholine transporter, respectively. At the time point studied (8 months), no apparent changes in either the size or density of cholinergic synapses were found in the PS1M146L mutant relative to the nontransgenic controls. However, the APPK670N,M671L mutant showed a significant elevation in the density of cholinergic synapses in the frontal and parietal cortices. Most importantly, the double mutant (APPK670N,M671L + PS1M146L), which had extensive amyloidosis, demonstrated a prominent diminution in the density of cholinergic synapses in the frontal cortex and a reduction in the size of these synapses in the frontal cortex and hippocampus. Nonetheless, no significant changes in the size of basal forebrain cholinergic neurons were observed in these three mutants. This study shows a novel role of APP and a synergistic effect of APP and PS1 that correlates with amyloid load on the reorganization of the cholinergic network in the cerebral cortex and hippocampus at the time point studied.  (+info)

THA improves word priming and clonidine enhances fluency and working memory in Alzheimer's disease. (37/11292)

We investigated the effects of a single administration of a cholinesterase inhibitor, tetrahydroaminoacridine (THA, 25 and 50 mg, orally), and an alpha 2-agonist, clonidine (0.5 and 2 micrograms/kg, orally), on neuropsychologic performance in two groups of patients with Alzheimer's disease (AD). Clonidine enhanced a spatial working memory and verbal fluency, but had no effect on spatial span or word priming. THA enhanced word priming, but had no effect on other performance measures. Our data suggests that degeneration of the LC noradrenergic system and the cholinergic cells of the basal forebrain have different functional consequences during the progression of AD. Finally, a combined treatment with noradrenergic and cholinergic drugs might produce a qualitatively broader effect on cognitive functions than either of the treatments alone, and more effectively attenuate clinical dementia.  (+info)

Direct interaction of Alzheimer's disease-related presenilin 1 with armadillo protein p0071. (38/11292)

Alzheimer's disease-related presenilins are thought to be involved in Notch signaling during embryonic development and/or cellular differentiation. Proteins mediating the cellular functions of the presenilins are still unknown. We utilized the yeast two-hybrid system to identify an interacting armadillo protein, termed p0071, that binds specifically to the hydrophilic loop of presenilin 1. In vivo, the presenilins constitutively undergo proteolytic processing, forming two stable fragments. Here, we show that the C-terminal fragment of presenilin 1 directly binds to p0071. Nine out of 10 armadillo repeats in p0071 are essential for mediating this interaction. Since armadillo proteins, like beta-catenin and APC, are known to participate in cellular signaling, p0071 may function as a mediator of presenilin 1 in signaling events.  (+info)

A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. (39/11292)

BACKGROUND AND PURPOSE: Several investigators have defined normal age-specific values for the medial temporal lobe structures in neurologically normal elderly subjects, but, to our knowledge, no one has reported those values for a large sample of healthy volunteers. The purpose of our study was to define normal age-specific values for the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle by age group, ranging from 40 to 90 years, in order to generate a guideline for the quantitative MR diagnosis and differential diagnosis for early Alzheimer disease. METHODS: MR-based volumetric measurements of the hippocampal formation, the amygdala, and the temporal horn, standardized by total intracranial volume, were obtained from oblique coronal and sagittal T1-weighted MR images in 619 healthy volunteers and two cadaveric specimens. RESULTS: Differences in standardized volumes of the hippocampal formation, the amygdala, and the temporal horn were significant among the 61- to 70-year-old, 71- to 80-year-old, and 81- to 90-year-old groups, and were not significant between the 40- to 50-year-old and 51- to 60-year-old groups. We found no significant differences in side or sex among the age groups for any of the structures. CONCLUSION: Differences in the mean value and in the 95% normal range of standardized volumes of the hippocampal formation, the amygdala, and the temporal horn correspond to differences in age among healthy subjects; therefore, age should be considered a factor in correlative research, especially in that involving patients in the early stages of Alzheimer disease.  (+info)

Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. (40/11292)

We have identified a novel beta amyloid precursor protein (betaAPP) mutation (V715M-betaAPP770) that cosegregates with early-onset Alzheimer's disease (AD) in a pedigree. Unlike other familial AD-linked betaAPP mutations reported to date, overexpression of V715M-betaAPP in human HEK293 cells and murine neurons reduces total Abeta production and increases the recovery of the physiologically secreted product, APPalpha. V715M-betaAPP significantly reduces Abeta40 secretion without affecting Abeta42 production in HEK293 cells. However, a marked increase in N-terminally truncated Abeta ending at position 42 (x-42Abeta) is observed, whereas its counterpart x-40Abeta is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Abeta but may be caused by increased production of truncated forms of Abeta ending at the 42 position.  (+info)