Genome sequence analysis of the avian retrovirus causing so-called fowl glioma and the promoter activity of the long terminal repeat. (33/332)

So-called fowl glioma is a retroviral infectious disease caused by avian leukosis virus subgroup A (ALV-A). We determined the complete nucleotide sequence of the virus genome. The full-length sequence was consistent with a genetic organization typical of a replication-competent type C retrovirus lacking viral oncogenes. The coding sequences were well conserved with those of replication-competent viruses, but the 3' noncoding regions including LTR were most related to those of replication-defective sarcoma viruses. The U3 region of the LTR had a few deletions and several point mutations compared to that of other ALVs. The promoter activities of the LTRs of glioma-inducing ALV and ALV-A standard strain, RAV-1, were equivalent in chick embryo fibroblasts (CEF), while that of glioma-inducing ALV was significantly lower than that of RAV-1 in human astrocytic cells. These subtle differences of the promoter activity of the LTR may be related to the induction of glial neoplasm.  (+info)

Reconstitution of retroviral fusion and uncoating in a cell-free system. (34/332)

The molecular events underlying the immediate steps of retroviral uncoating, occurring after membrane fusion and leading to the formation of an active reverse transcription complex, are not known. To better understand these processes, we have developed a cell-free system that recapitulates these early steps of retroviral replication by using avian sarcoma and leukosis virus as a model retrovirus. The substrates used in this system are viral particles that are trapped before completing membrane fusion. These virions are induced to fuse out of endosomes and the viral cores are released into solution where they are amenable to biochemical manipulation. This system revealed that membrane fusion is not sufficient to stimulate the formation of a reverse transcription complex. Instead, ATP hydrolysis and cellular factors >5 kDa in size are required. Furthermore, later steps of avian sarcoma and leukosis virus reverse transcription were stimulated by nuclear factors. The cell-free system should now allow for the definition of retroviral uncoating mechanisms and facilitate the identification and characterization of the cellular factors involved.  (+info)

Site-specific excision or protection of an alpha A globin gene genomic site in apoptotic transformed chicken erythroblasts. (35/332)

There is still no clarity on whether the endonuclease incisions in apoptotic cells are induced randomly in the genome or induced in some preferable sites. In order to evaluate the intensity of DNA fragmentation in the chicken alpha-globin domain, AEV-virus transformed chicken erythroblasts (HD3) were incubated in a serum free medium, and their DNA was Southern blotted and hybridised with probes representing different fragments of the domain. Probes corresponding to the upstream areas of the domain mostly hybridised with high molecular weight DNA. Unlike these, the probe corresponding to the 2 Kb BamHI-BamHI fragment, containing the alphaA globin gene (B18), revealed a 5 Kb band on the hybridisation autoradiographs. The probe to the neighbouring upstream fragment did not reveal this band, but it was clearly seen on hybridisations with a downstream 1 Kb BamHI-BamHI fragment. The intensity of the band increased with overall apoptotic DNA degradation, hence its appearance should be coupled to apoptosis. Hybridisation of BamHI-digested DNA with B18 probe revealed a shortening of the 2 Kb band in preparations of DNA from apoptotic cells. The presumable positions of the cuts correspond to the formerly described DNase hypersensitive sites in the domain. Slot-blot and Northern hybridisation of RNA extracted from apoptotic HD3 cells revealed that the excision of the area of the B18 gene is coupled to a decrease in the intensity of alphaA globin gene transcription. Transcription of the non-erythroid NIK gene, transcribed in the upstream part of the domain, did not depend on the level of apoptotic DNA fragmentation.  (+info)

Complete nucleotide sequences of ALV-related endogenous retroviruses available from the draft chicken genome sequence. (36/332)

Complete nucleotide sequences of chicken endogenous retroviruses belonging to E33/E51 and EAV-0 groups have been analysed on the basis of the recently available draft genome sequence of red jungle fowl (Gallus gallus), the progenitor of domestic chicken (G.g. domesticus). It was shown that all these proviruses have deletions in the SU-coding domain of the env gene, involved in receptor recognition, whereas gag and pol genes appear to be intact. Phylogenetic analysis demonstrated that E33/E51 and EAV-0 groups are related to the ALV genus. An analysis of expression using chicken EST databases showed that these proviruses are transcriptionally active.  (+info)

Relationship between retroviral DNA-integration-site selection and host cell transcription. (37/332)

Retroviral DNA integration occurs throughout the genome; however, local "hot spots" exist where a strong preference for certain sites over others are seen, and more global preferences associated with genes have been reported. Previous data from our laboratory suggested that there are fewer integration events into a DNA template when it is undergoing active transcription than when it is not. Because these data were generated by using a stably transfected foreign gene that was only weakly inducible, we have extended this observation by comparing integration events into a highly inducible endogenous gene under both induced and uninduced transcriptional states. To examine the influence of transcription on site selection directly, we analyzed the frequency and distribution of integration of avian retrovirus DNA into the metallothionein gene, before and after its induction to a highly sustained level of expression by addition of ZnSO4. We found a 6-fold reduction in integration events after 100-fold induction of transcription. This result implies that, despite an apparent preference for integration of retroviral DNA into transcribed regions of host DNA, high-level transcription can be inhibitory to the integration process. Several possible models for our observation are as follows. First, when a DNA template is undergoing active transcription, integration might be blocked by the RNA polymerase II complex because of steric hindrance. Alternatively, the integrase complex may require DNA to be in a double-stranded conformation, which would not be the case during active transcription. Last, transcription might lead to remodeling of chromatin into a structure that is less favorable for integration.  (+info)

Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. (38/332)

To investigate retroviral integration targeting on a nucleotide scale, we examined the base frequencies directly surrounding cloned in vivo HIV-1, murine leukemia virus, and avian sarcoma/leukosis virus integrations. Base preferences of up to 2-fold the expected frequencies were found for three viruses, representing P values down to <10(-100) and defining what appear to be preferred integration sequences. Offset symmetry reflecting the topology of the integration reaction was found for HIV-1 and avian sarcoma/leukosis virus but not murine leukemia virus, suggesting fundamental differences in the way different retroviral integration complexes interact with host-cell DNA.  (+info)

Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. (39/332)

We have analyzed the placement of sites of integration of avian sarcoma-leukosis virus (ASLV) and human immunodeficiency virus (HIV) DNA in the draft chicken genome sequence, with the goals of assessing species-specific effects on integration and allowing comparison to the distribution of chicken endogenous retroviruses (ERVs). We infected chicken embryo fibroblasts (CEF) with ASLV or HIV and sequenced 863 junctions between host and viral DNA. The relationship with cellular gene activity was analyzed by transcriptional profiling of uninfected or ASLV-infected CEF cells. ASLV weakly favored integration in active transcription units (TUs), and HIV strongly favored active TUs, trends seen previously for integration in human cells. The ERVs, in contrast, accumulated mostly outside TUs, including ERVs related to ASLV. The minority of ERVs present within TUs were mainly in the antisense orientation; consequently, the viral splicing and polyadenylation signals would not disrupt cellular mRNA synthesis. In contrast, de novo ASLV integration sites within TUs showed no orientation bias. Comparing the distribution of de novo ASLV integration sites to ERVs indicated that purifying selection against gene disruption, and not initial integration targeting, probably determined the ERV distribution. Further analysis indicated that ERVs in humans, mice, and rats showed similar distributions, suggesting purifying selection dictated their distributions as well.  (+info)

Virus envelope markers in mammalian tropism of avian RNA tumor viruses. (40/332)

Pseudotypes of vesicular stomatitis virus were prepared with avian sarcoma viruses and avian leukemia viruses representing five different subgroups. These pseudotypes display a host range restricted to that of the avian tumor virus when assayed on avian cells and are neutralized by subgroup-specific antisera. The efficiency of penetration of mammalian cells was assayed by using these vesicular stomatitis virus pseudotypes. Pseudotypes of avian tumor viruses belonging to subgroup D and of B77 virus were able to plate on mammalian cells with a high efficiency, whereas pseudotypes of other strains were not. The efficiency of penetration of the vesicular stomatitis virus pseudotypes was 10-2-to 10-3-fold higher than the efficiency of transformation of the corresponding avian tumor virus strain assayed on mammalian cells, suggesting that there are postpenetration blocks to the expression of transformation in these cells.  (+info)