Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. (9/725)

Nicotinic acetylcholine receptors in the nervous system are heterogeneous with distinct pharmacological and functional properties resulting from differences in post-translational processing and subunit composition. Because of nicotinic receptor diversity, receptor purification and biochemical characterization have been difficult, and the precise subunit composition of each receptor subtype is poorly characterized. Evidence is presented that alpha-bungarotoxin (Bgt)-binding nicotinic receptors found in pheochromocytoma 12 (PC12) cells are pentamers composed solely of alpha7 subunits. Metabolically labeled, affinity-purified Bgt receptors (BgtRs) consisted of a single 55 kDa band on SDS gels, which was recognized by anti-alpha7 antibodies on immunoblots. Isoelectric focusing separated the 55 kDa band into multiple spots, all recognized by anti-alpha7 antibodies and, therefore, each a differentially processed alpha7 subunit. Cell-surface BgtR subunits, cross-linked to each other and (125)I-Bgt, migrated on gels as a ladder of five bands with each band a multiple of an alpha7 subunit monomer. Similar characteristics of BgtRs from rat brain suggest that they, like PC12 BgtRs, are alpha7 pentamers containing differentially processed alpha7 subunits.  (+info)

Chemical engineering of a three-fingered toxin with anti-alpha7 neuronal acetylcholine receptor activity. (10/725)

Though it possesses four disulfide bonds the three-fingered fold is amenable to chemical synthesis, using a Fmoc-based method. Thus, we synthesized a three-fingered curaremimetic toxin from snake with high yield and showed that the synthetic and native toxins have the same structural and biological properties. Both were characterized by the same 2D NMR spectra, identical high binding affinity (K(d) = 22 +/- 5 pM) for the muscular acetylcholine receptor (AChR) and identical low affinity (K(d) = 2.0 +/- 0.4 microM) for alpha7 neuronal AchR. Then, we engineered an additional loop cyclized by a fifth disulfide bond at the tip of the central finger. This loop is normally present in longer snake toxins that bind with high affinity (K(d) = 1-5 nM) to alpha7 neuronal AchR. Not only did the chimera toxin still bind with the same high affinity to the muscular AchR but also it displayed a 20-fold higher affinity (K(d) = 100 nM) for the neuronal alpha7 AchR, as compared with the parental short-chain toxin. This result demonstrates that the engineered loop contributes, at least in part, to the high affinity of long-chain toxins for alpha7 neuronal receptors. That three-fingered proteins with four or five disulfide bonds are amenable to chemical synthesis opens new perspectives for engineering new activities on this fold.  (+info)

Cytoskeletal links of neuronal acetylcholine receptors containing alpha 7 subunits. (11/725)

Nicotinic acetylcholine receptors serve a variety of signaling functions in the nervous system depending on cellular location, but little is known about mechanisms responsible for tethering them at specific sites. Among the most interesting are receptors containing the alpha7 gene product, because of their abundance and high relative permeability to calcium. On chick ciliary ganglion neurons alpha7-containing receptors are highly concentrated on somatic spines folded into discrete patches on the cell. We show that the spines contain filamentous actin and drebrin. After cell dissociation, the actin slowly redistributes, the spines retract, and the alpha7-containing receptors disperse and are subsequently lost from the surface. Latrunculin A, a drug that depolymerizes filamentous actin, accelerates receptor dispersal, whereas jasplikinolide, a drug that stabilizes the actin cytoskeleton, preserves large receptor clusters and prevents receptor loss from the surface. The receptors are resistant to extraction by nonionic detergent even after latrunculin A treatment. Other, less abundant, nicotinic receptors on the neurons are readily solubilized by the detergent even though these receptors are located in part on the spines. The results demonstrate that the actin cytoskeleton is important for retaining receptor-rich spines and indicate that additional cytoskeletal elements or molecular interactions specific for alpha7-containing receptors influence their fate in the membrane. The cytoskeletal elements involved are not dependent on the architecture of the postsynaptic density because alpha7-containing receptors are excluded from such sites on ciliary ganglion neurons.  (+info)

Dominant partial epilepsies. A clinical, electrophysiological and genetic study of 19 European families. (12/725)

Nineteen families with autosomal dominant partial epilepsy were analysed clinically and electrophysiologically in detail. Seventy-one patients were studied as well as 33 non-epileptic at-risk family members. We subdivided the families into those with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) (n = 8), familial temporal lobe epilepsy (n = 7) and autosomal dominant partial epilepsy with variable foci (n = 4). However, the application of this nosology to certain families was difficult in cases of non-specific or conflicting clinical and electrophysiological evidence. This was underscored by the observation by depth electrode recordings in one patient that a so-called ADNFLE may originate in an extrafrontal area. The evolution of familial partial epilepsies, which exhibit great intrafamilial variability, is not always benign. The level of pharmacoresistance may reach 30%, close to that seen in classical cryptogenic partial epilepsies. The familial character of a partial epilepsy may be unrecognized in small families as some affected members may have only EEG abnormalities and are clinically asymptomatic, which reflects incomplete clinical penetrance. In view of the recent discoveries of mutations in the alpha4 nicotinic acetylcholine receptor subunit in a few families with ADNFLE, this genetic study focused on genes encoding nicotinic receptor subunits and a candidate region on chromosome 10q. No mutation was detected in the alpha4 and 012 nicotinic acetylcholine receptor subunits. Positive but not significant lod scores were obtained in four families with markers from the candidate region on chromosome 10q.  (+info)

Two distinct classes of functional 7-containing nicotinic receptor on rat superior cervical ganglion neurons. (13/725)

Nicotinic acetylcholine receptors (nAChRs) that bind alpha-bungarotoxin (alpha Bgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques. Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by alpha Bgt (50 nM). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh. Nanomolar concentrations of methyllycaconitine blocked the alpha Bgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-alpha 7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of alpha 7-containing receptor (alpha 7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons. A second class of functional alpha 7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by alpha Bgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to alpha 7-nAChRs in a number of other neuronal cell types. Experiments measuring the dissociation rate of 125I-labelled alpha Bgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of alpha Bgt-sensitive response. These results indicate that rat SCG neurons express two types of functional alpha 7-nAChR, differing in pharmacology, desensitization and reversibility of alpha Bgt blockade.  (+info)

Distribution and development of nicotinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. (14/725)

Acetylcholine allows the elicitation of visually evoked behaviors mediated by the frog optic tectum, but the mechanisms behind its effects are unknown. Although nicotinic acetylcholine receptors (nAChRs) exist in the tectum, their subtype has not been assessed. By using quantitative autoradiography, we examined the binding of [(3)H]cytisine and [(125)I]alpha-bungarotoxin in the laminated tectum. In mammalian systems, these radioligands bind with high affinity to alpha4 nAChR subunits and alpha7 nAChR subunits, respectively. [(3)H]Cytisine demonstrated high specific binding in adult frogs in retinorecipient layer 9, intermediate densities in layer 8, and low binding in layers 1-7 of the tectum. [(3)H]Cytisine binding was significantly higher in the tecta of adults than in those of tadpoles. Lesioning the optic nerve for 6 weeks decreased [(3)H]cytisine binding in layers 8/9 by 70+/-1%, whereas 6-month lesions decreased binding by 76+/-3%. Specific binding of [(125)I]alpha-bungarotoxin in adults was present only at intermediate levels in tectal layers 8 and 9, and undetectable in the deeper tectal layers. However, the nucleus isthmi, a midbrain structure reciprocally connected to the tectum, exhibited high levels of binding. There were no significant differences in tectal [(125)I]alpha-bungarotoxin binding between tadpoles and adults. Six-week lesions of the optic nerve decreased tectal [(125)I]alpha-bungarotoxin binding by 33+/-10%, but 6-month lesions had no effect. The pharmacokinetic characteristics of [(3)H]cytisine and [(125)I]alpha-bungarotoxin binding in the frog brain were similar to those demonstrated in several mammalian species. These results indicate that [(3)H]cytisine and [(125)I]alpha-bungarotoxin identify distinct nAChR subtypes in the tectum that likely contain non-alpha7 and alpha7 subunits, respectively. The majority of non-alpha7 receptors are likely associated with retinal ganglion cell terminals, whereas alpha7-containing receptors appear to have a different localization.  (+info)

A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. (15/725)

Cholinergic markers in the middle layers of rat auditory cortex are transiently upregulated during the second postnatal week, at which time alpha 7 nicotinic acetylcholine receptors (nAChRs) selectively regulate NMDA receptor (NMDAR)-mediated EPSPs. To investigate the developmental role of this regulation, we determined whether manipulating nAChR function at specific times during the first 4 weeks after birth could alter subsequent neuronal function. Rat pups were injected twice daily with nicotine (1 or 2 mg/kg) or saline during approximately the first, second, or fourth postnatal week (i. e., before, during, or after the peak upregulation of nAChRs). Glutamate EPSPs and intrinsic membrane properties were measured during whole-cell recordings from visually identified pyramidal neurons in layers II-IV of brain slices prepared at least 15 hr after the last injection. Chronic nicotine exposure (CNE) had little effect on intrinsic membrane properties and during week 1 or 4 did not affect synaptic function. However, CNE during week 2 resulted in EPSPs with long durations, multiple peaks, and enhanced NMDAR components. These changes remained significant even 10 d after CNE. Rapid application of nicotine, which in control neurons selectively enhances NMDAR EPSPs during week 2, produced only weak effects after CNE. Receptor binding studies showed that CNE-induced EPSP alterations occurred in the absence of altered alpha 7 nAChR numbers or agonist binding affinity. Thus, altered stimulation of nAChRs by CNE during week 2, but not before or after, disrupts the development of glutamate synapses in rat auditory cortex.  (+info)

Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. (16/725)

Neuronal nicotinic receptors are comprised of combinations of alpha(2-9) and beta(2-4) subunits arranged to form a pentameric receptor. Currently, the principal central nervous system (CNS) subtypes are believed to be alpha(4)beta(2) and a homomeric alpha(7) receptor, although other combinations almost certainly exist. The identity of the nicotinic receptor subtype(s) involved in the rewarding effects of nicotine are unknown. In the present study, using some recently described subtype selective nicotinic agonists and antagonists, we investigated the role of the alpha(7) nicotinic receptor in the mediation of nicotine-induced hyperactivity and self-administration in rats. The alpha(7) receptor agonists AR-R 17779 and DMAC failed to stimulate locomotor activity in both nicotine-nontolerant and -sensitized rats. In contrast, nicotine and the putative alpha(4)beta(2) subtype selective agonist SIB1765F increased activity in both experimental conditions. In nicotine-sensitized rats, the high affinity (including the alpha(4)beta(2) subtype) nicotinic antagonist dihydro-beta-erythroidine (DHbetaE), but not the selective alpha(7) antagonist methyllycaconitine (MLA), antagonized a nicotine-induced hyperactivity. Similarly, DHbetaE, but not MLA, pretreatment reduced nicotine self-administration. Electrophysiology experiments using Xenopus oocytes expressing the human alpha(7) receptor confirmed AR-R 17779 and DMAC to be potent agonists at this site, and further studies demonstrated the ability of systemically administered AR-R 17779 to penetrate into the CNS. Taken together, these results indicate a negligible role of alpha(7) receptors in nicotine-induced hyperlocomotion and reward in the rat, and support the view for an involvement of a member from the high-affinity nicotinic receptor subclass, possibly alpha(4)beta(2). Issues such as drug potency, CNS penetration, and desensitization of the alpha(7) receptor are discussed.  (+info)