A non-alpha7 nicotinic acetylcholine receptor modulates excitatory input to hippocampal CA1 interneurons. (49/725)

The nicotinic acetylcholine receptor (nAChR), particularly the alpha7 subtype, has received profound attention for its role in modifying excitatory postsynaptic currents (EPSCs) in hippocampal pyramidal neurons as well as in neurons from other brain regions. Here, we tested the possibility that an nAChR could affect EPSCs in the interneurons of rat hippocampal slices. Using whole-cell patch-clamp technique on CA1 stratum radiatum interneurons and U-tube application of agents, we show that nicotinic agonists enhance EPSC frequency in interneurons. Among the agents tested, cytisine and mecamylamine were the most effective agonist and antagonist, respectively, suggesting a role for alpha3beta4-containing nAChRs in the modulation of interneuron EPSCs. Ligands selective for the alpha7 nAChR had very little or no effect on interneuron EPSCs. Low concentrations of nicotine also enhanced EPSC frequency, implicating the involvement of non-alpha7 nAChRs in controlling interneuron excitability in smokers. We conclude that nAChR-dependent EPSC modulation in the hippocampus is both subtype- and neuron-specific and that a non-alpha7 nAChR, presumably alpha3beta4, controls glutamate transmission to CA1 interneurons.  (+info)

Permeant but not impermeant divalent cations enhance activation of nondesensitizing alpha(7) nicotinic receptors. (50/725)

Neuronal alpha(7) nicotinic acetylcholine receptors (nAChRs) are permeable to Ca(2+) and other divalent cations. We characterized the modulation of the pharmacological properties of nondesensitizing mutant (L(247)T and S(240)T/L(247)T) alpha(7) nAChRs by permeant (Ca(2+), Ba(2+), and Sr(2+)) and impermeant (Cd(2+) and Zn(2+)) divalent cations. alpha(7) receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Extracellular permeant divalent cations increased the potency and maximal efficacy of ACh, whereas impermeant divalent cations decreased potency and maximal efficacy. The antagonist dihydro-beta-erythroidine (DHbetaE) was a strong partial agonist of L(247)T and S(240)T/L(247)T alpha(7) receptors in the presence of divalent cations but was a weak partial agonist in the presence of impermeant divalent cations. Mutation of the "intermediate ring" glutamates (E(237)A) in L(247)T alpha(7) nAChRs eliminated Ca(2+) conductance but did not alter the Ca(2+)-dependent increase in ACh potency, suggesting that site(s) required for modulation are on the extracellular side of the intermediate ring. The difference between permeant and impermeant divalent cations suggests that sites within the pore are important for modulation by divalent cations.  (+info)

Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein. (51/725)

The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.  (+info)

The single-channel properties of human acetylcholine alpha 7 receptors are altered by fusing alpha 7 to the green fluorescent protein. (52/725)

Neuronal nicotinic acetylcholine (AcCho) receptors composed of alpha7-subunits (alpha7-AcChoRs) are involved in many physiological activities. Nevertheless, very little is known about their single-channel characteristics. By using outside-out patch-clamp recordings from Xenopus oocytes expressing wild-type (wt) alpha7-AcChoRs, we identified two classes of channel conductance: a low conductance (gamma(L)) of 72 pS and a high one (gamma(H)) of 87 pS, with mean open-times (tau(op)) of 0.6 ms. The same classes of conductances, but longer tau(op) (3 ms), were seen in experiments with chimeric alpha7 receptors in which the wtalpha7 extracellular C terminus was fused to the green fluorescent protein (wtalpha7-GFP AcChoRs). In contrast, channels with three different conductances were gated by AcCho in oocytes expressing alpha7 receptors carrying a Leu-to-Thr 248 mutation (mutalpha7) or oocytes expressing chimeric mutalpha7-GFP receptors. These conductance levels were significantly smaller, and their mean open-times were larger, than those of wtalpha7-AcChoRs. Interestingly, in the absence of AcCho, these oocytes showed single-channel openings of the same conductances, but shorter tau(op), than those activated by AcCho. Accordingly, human homomeric wtalpha7 receptors open channels of high conductance and brief lifetime, and fusion to GFP lengthens their lifetime. In contrast, mutalpha7 receptors open channels of lower conductance and longer lifetime than those gated by wtalpha7-AcChoRs, and these parameters are not greatly altered by fusing the mutalpha7 to GFP. All this evidence shows that GFP-tagging can alter importantly receptor kinetics, a fact that has to be taken into account whenever tagged proteins are used to study their function.  (+info)

Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. (53/725)

Familial Alzheimer's disease-associated mutations in presenilin 1 or 2 or amyloid precursor protein result in elevated beta-amyloid, beta-amyloid accumulation, and plaque formation in the brains of affected individuals. By crossing presenilin 1 transgenic mice carrying the A246E mutation with plaque-producing amyloid precursor protein K670N/M671L transgenic mice (Tg2576), we show that co-expression of both mutant transgenes results in acceleration of amyloid accumulation and associative learning deficits. At 5 months of age with no detectable plaque pathology, amyloid precursor protein transgenic animals are impaired in contextual fear learning following two pairings of conditioned and unconditioned stimuli but appear normal following a more robust five-pairing training. At 9 months of age when beta-amyloid deposition is evident, these mice are impaired following both two-pairing and five-pairing protocols. Mice carrying both transgenes are impaired in contextual fear conditioning at either age. All transgenic animal groups performed as well as controls in cued fear conditioning, indicating that the contextual fear learning deficits are hippocampus-specific. The associative learning impairments are coincident with elevated alpha 7 nicotinic acetylcholine receptor protein in the dentate gyrus. These findings provide two robust and rapid assays for beta-amyloid-associated effects that can be performed on young animals: impaired contextual fear learning and up-regulation of alpha 7 nicotinic receptors.  (+info)

Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. (54/725)

Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including alpha7-containing receptors that have properties unlike those expected for homomeric alpha7 nAChRs. We previously reported a strong correlation between expression of the alpha7 and of the beta2 subunits in individual neurons. To explore whether co-assembly of the alpha7 and beta2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the beta2 subunit, both wild-type and mutant forms, with the alpha7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric alpha7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both alpha7 and beta2 subunits. In addition the EC(50) values for all three agonists significantly increased when the beta2 subunit was co-expressed with the alpha7 subunit. Co-expression with the beta2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the alpha7 and beta2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR alpha7 and beta2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric alpha7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system.  (+info)

Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. (55/725)

We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.  (+info)

Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopus oocytes expressing alpha 7 receptors. (56/725)

1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.  (+info)