The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. (9/346)

The acid hydrolase alpha-mannosidase, which accumulates in plant vacuoles and probably is involved in the catabolism and turnover of N-linked glycoproteins, is itself a glycoprotein with at least one high-mannose-type and one complex-type N-glycan. The puzzling finding that alpha-mannosidase stably carries its own substrate suggests that the N-glycans have unique topologies, and important functions in protein folding, oligomerization or enzyme activity. As a first step towards the elucidation of this enigma, we purified the N-glycans of jack bean alpha-mannosidase and determined their structures by sugar composition analysis, mass spectrometry and 1H-NMR. The structures of two N-glycans were identified in an approximate ratio of one-to-one: a glucose-containing high-mannose-type glycan (Glc1Man9GlcNAc2) and a small xylose- and fucose-containing complex-type glycan (Xyl1Man1Fuc1GlcNAc2). Isolation and sequencing of glycopeptides strongly suggests that one high-mannose-type and one complex-type glycan are linked to specific glycosylation sites of the large alpha-mannosidase subunit. The high-mannose-type glycan, which is a good substrate of the endoglycosidase (endo-H), can only be removed from the enzyme after denaturation and cleavage of disulfide bonds by a reducing agent, suggesting that this glycan is buried within the folded polypeptide and, thus, protected from its hydrolytic activity. Denaturation and reduction of the native enzyme led to a marked decrease in alpha-mannosidase activity. However, the activity could largely be recovered by renaturation in an appropriate renaturation buffer. In contrast, recovery of alpha-mannosidase activity failed when the high-mannose-type glycan was removed by endo-H prior to renaturation, indicating that this glycan appears to be important for enzyme activity.  (+info)

Characterization of the pharmacological-sensitivity profile of neoglycoprotein-induced acrosome reaction in mouse spermatozoa. (10/346)

Mammalian spermatozoa undergo the acrosome reaction (AR) in response to the interaction of a carbohydrate-recognizing molecule(s) on the sperm plasma membrane (sperm surface receptor) and its complementary glycan (ligand) moiety(ies) on the zona pellucida (ZP). Previously, we demonstrated that a hexose (mannose) or two amino sugars (glucosaminyl or galactosaminyl residues) when covalently conjugated to a protein backbone (neoglycoproteins) mimicked the mouse ZP3 glycoprotein and induced the AR in capacitated mouse spermatozoa (Loeser and Tulsiani, Biol Reprod 1999; 60:94-101). To elucidate the mechanism underlying sperm-neoglycoprotein interaction and the induction of the AR, we have examined the effect of several AR blockers on neoglycoprotein-induced AR. Our data demonstrate that two known L-type Ca(2+) channel blockers prevented the induction of the AR by three neoglycoproteins (mannose-BSA, N-acetylglucosamine-BSA, and N-acetylgalactosamine-BSA). The fact that the L-type Ca(2+) channel blockers (verapamil, diltiazem) had no inhibitory effect on sperm surface galactosyltransferase or alpha-D-mannosidase, two carbohydrate-recognizing enzymes thought to be sperm surface receptors, suggests that the reagents block the AR by a mechanism other than binding to the active site of the enzymes.  (+info)

Quantitation and isomeric structure analysis of free oligosaccharides present in the cytosol fraction of mouse liver: detection of a free disialobiantennary oligosaccharide and glucosylated oligomannosides. (11/346)

The amounts and isomeric structures of free oligosaccharides derived from N-linked sugar chains present in the cytosol fraction of perfused mouse liver were analyzed by tagging the reducing end with 2-aminopyridine followed by 2-dimensional HPLC mapping with standard sugar chains. Sixteen pyridylaminated (PA-) oligomannosides terminating with a PA-GlcNAc residue (GN1-type), three glucose-containing oligomannosides, and four oligomannosides terminating with a PA-di-N-acetylchitobiose (GN2-type) were detected. The total contents of the GN1- and GN2-type oligomannosides were 3. 4 and 0.5 nmol, respectively, per gram of wet tissue. Maltooligosaccharides (dimer to pentamer) were also detected, the total content of which was 13 nmol per gram of wet tissue. Besides these oligosaccharides, a PA-disialobiantennary sugar chain-the sole complex-type sugar chain-was also detected. All the oligomannosides identified had partial structures of Glc(3)Man(9)GlNAc(2)-p-p-dolichol, revealing that they were metabolic degradation products. Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)++ +Manbeta1-4GlcNAc (M5B') was the major oligomannoside, suggesting that cytosolic endo-beta-N-acetylglucosaminidase and neutral alpha-mannosidase participate in the degradation, because these enzymes have suitable substrate specificities for the production of M5B'. Degradation by these enzymes seems to be the main pathway by which oligomannosides are degraded in mouse cytosol; however, small amounts of Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4(GlcNAc)1-2 and related oligomannosides together with parts of their structures were also detected, suggesting that there is another minor route by which cytosolic free oligomannosides are produced.  (+info)

Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography-electrospray mass spectrometry and Edman degradation. (12/346)

An N-linked glycosylation in a novel C-lectin protein from snake venom was observed by Edman degradation and liquid chromatography-electrospray mass spectrometry. The peptides obtained by trypsin cleavage were analyzed to confirm the amino acid sequence and Asn5 was found to be the N-glycosylation site. The result was further confirmed by N-glycosidase digestion. In addition, the protein and tryptic peptides with and without glycan chain were characterized by mass spectrometry according to the mass difference. The glycopeptide obtained from proteolytic digestion was analyzed and the glycoforms were identified as high-mannose type by tandem MS coupled with alpha-mannosidase digestion. An oxidized Met residue was detected and located in the protein by mass spectrometry.  (+info)

Importance of glycosidases in mammalian glycoprotein biosynthesis. (13/346)

Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.  (+info)

Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. (14/346)

Clostridium botulinum C2 toxin is a binary toxin composed of an enzymatic subunit (C2I) capable of ADP-ribosylating actin and a binding subunit (C2II) that is responsible for interaction with receptors on eukaryotic cells. Here we show that binding of C2 toxin depends on the presence of asparagine-linked carbohydrates. A recently identified Chinese hamster ovary cell mutant (Fritz, G., Schroeder, P., and Aktories, K. (1995) Infect. Immun. 63, 2334-2340) was found to be deficient in N-acetylglucosaminyltransferase I. C2 sensitivity of this mutant was restored by transfection of an N-acetylglucosaminyltransferase I cDNA. C2 toxin sensitivity was reduced after inhibition of alpha-mannosidase II. In contrast, Chinese hamster ovary cell mutants deficient in sialylated (Lec2) or galactosylated (Lec8) glycoconjugates showed an increase in toxin sensitivity compared with wild-type cells. Our results show that the GlcNAc residue linked beta-1,2 to the alpha-1,3-mannose of the asparagine-linked core structure is essential for C2II binding to Chinese hamster ovary cells.  (+info)

The alpha-mannosidases: phylogeny and adaptive diversification. (15/346)

alpha-Mannosidase enzymes comprise a class of gylcoside hydrolases involved in the maturation and degradaton of glycoprotein-linked oligosaccharides. Various alpha-mannosidase enzymatic activities are encoded by an ancient and ubiquitous gene superfamily. A comparative sequence analysis was employed here to characterize the evolutionary relationships and dynamics of the alpha-mannosidase superfamily. A series of lineage-specific BLAST searches recovered the first ever recognized archaean and eubacterial alpha-mannosidase sequences, in addition to numerous eukaryotic sequences. Motif-based alignment and subsequent phylogenetic analysis of the entire superfamily revealed the presence of three well-supported monophyletic clades that represent discrete alpha-mannosidase families. The comparative method was used to evaluate the phylogenetic distribution of alpha-mannosidase functional variants within families. Results of this analysis demonstrate a pattern of functional diversification of alpha-mannosidase paralogs followed by conservation of function among orthologs. Nucleotide polymorphism among the most closely related pair of duplicated genes was analyzed to evaluate the role of natural selection in the functional diversification of alpha-mannosidase paralogs. Ratios of nonsynonymous and synonymous variation show an increase in the rate of nonsynonymous change after duplication and a relative excess of fixed nonsynonymous changes between the two groups of paralogs. These data point to a possible role for positive Darwinian selection in the evolution of alpha-mannosidase functional diversification following gene duplication.  (+info)

Endometrial lysosomal enzyme activity in ovulatory dysfunctional uterine bleeding, IUCD users and post-partum women. (16/346)

The aim of this study was to evaluate the role of lysosomal enzymes in excessively heavy menstruation by comparing women with menorrhagia due to dysfunctional bleeding or intrauterine contraceptive device (IUCD) use with those with normal menstrual periods or with amenorrhoea associated with breastfeeding. This was a prospective cohort investigation of the activity of four endometrial lysosomal enzymes in three contrasting groups: (i) women with ovulatory dysfunctional uterine bleeding and users of intrauterine contraceptive devices; (ii) breastfeeding post-partum women in whom there are long periods of amenorrhoea, particularly in the early months post-partum; and (iii) normal cycling women. It was found that the total activity of lysosomal enzymes, particularly acid phosphatase and N-acetyl-beta-D-glucosaminidase, was markedly elevated (P < 0.001) in IUCD-exposed endometrium, and endometrium from women with dysfunctional uterine bleeding when compared with endometrium from women with a history of entirely normal menstrual periods or that in post-partum breastfeeding women. The activity of alpha-L-fucosidase was moderately elevated in IUCD users (P < 0.05) and ovulatory dysfunctional uterine bleeding (P < 0.05), whereas alphaD-mannosidase activity was elevated in ovulatory dysfunctional uterine bleeding (P < 0.05), but decreased in IUCD users (P < 0.01). No significant differences were observed in the lysosomal enzyme activities of breastfeeding post-partum women and normal cycling women. These results show that total endometrial tissue activity of four lysosomal enzymes was substantially increased throughout the cycle in most circumstances in women with two different causes for increased menstrual bleeding. This suggests a contributory role to the increased bleeding.  (+info)