Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. (41/510)

It is known that octadecanoids, i.e. jasmonic acid and related compounds are involved in plant defence reactions against (1) microbial pathogens, (2) herbivores and (3) damage by UV-B or UV-C light as well as (4) senescence and (5) mechanotransduction. Jasmonic acid is likely to occur ubiquitously in the plant kingdom, and it has also been found in some fungi. The pathway of octadecanoid biosynthesis was elucidated in the early 80s by Vick and Zimmerman. This review summarizes recent progress in the identification and characterization of octadecanoid biosynthetic enzymes and in the understanding of the regulation of octadecanoid biosynthesis.  (+info)

Effect of dietary linoleate/alpha-linolenate balance on the brain lipid composition, reproductive outcome and behavior of rats during their prenatal and postnatal development. (42/510)

The effect of the dietary linoleate (LA)/alpha-linolenate (LNA) balance during development on the brain lipid composition, reproductive outcome and behavior of rats was studied. Female rats were fed on experimental diets during pregnancy and the resulting pups for 16 weeks. The dietary LA/LNA ratios were 1.07 (LA1), 2.64 (LA2), 4.45 (LA3), 7.68 (LA4) and 10.35 (LA5). The relative content of docosahexaenoate (DHA) in the brain of pups tended to increase with decreasing LA/LNA ratio at 0 and 3 weeks, while the level of DHA was maintained constant at 16 weeks regardless of the dietary LA/LNA ratio. The learning ability was measured at 12 weeks of age, and there was no difference among the groups. In an open field test, the exploratory index was significantly lower in the LA1 group than in the LA2 group. The LA1 group had a smaller litter size and lower survival rate than the other groups. We conclude that if the diet contained appropriate amounts and balance of LA and LNA, it was possible for rats to synthesize an appropriate amount of DHA and have normal behavioral activity without DHA supplementation.  (+info)

Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. (43/510)

BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  (+info)

In vivo substrates and the contribution of the common phospholipase D, PLDalpha, to wound-induced metabolism of lipids in Arabidopsis. (44/510)

The common plant phospholipase D (PLD), PLDalpha, has been proposed to be involved in wound-induced production of jasmonic acid. To better understand the role(s) of PLDalpha in the wound response, detailed lipid analysis was carried out to determine the in vivo substrates and the contribution of PLDalpha in wound-induced lipid metabolism in Arabidopsis thaliana. Mechanical wounding of Arabidopsis leaves resulted in significantly less hydrolysis of phosphatidylcholine (PC) in PLDalpha-deficient than in wild-type plants. Hydrolysis of phosphatidylethanolamine, phosphatidylglycerol (PG), and phosphatidylinositol within 30 min of wounding was not significantly different in PLDalpha-deficient and wild-type leaves. Phosphatidic acid (PA) levels increased rapidly in wild-type and, to a lesser extent, in PLDalpha-deficient plants. The acyl composition of the PA generated by wounding suggests that the major in vivo substrate of PLD in wild-type leaves was PC, and that PG hydrolysis accounted for 10-15% of the wound-induced PA in wild-type leaves. Comparison of the acyl compositions of the wound-induced PA of wild-type and PLDalpha-deficient leaves indicated that PLDalpha hydrolyzed PG more readily than other PLD isoforms did. Wounding produced substantial increases in free linoleic and linolenic acids in wild-type plants, whereas PLDalpha-deficient plants showed only a slight increase in linoleic acid and no significant increase in linolenic acid. These results demonstrate that PLDalpha and at least one other PLD isoform, as well as other hydrolytic enzymes, are active in mechanically wounded Arabidopsis leaves, and PLDalpha is involved in wound-induced metabolism of polyunsaturated fatty acids.  (+info)

Maternal essential fatty acid deficiency depresses serum leptin levels in suckling rat pups. (45/510)

Dietary lipid quantity and quality have recently been shown to affect serum leptin levels in adult rats. Moreover, suckling pups from dams fed a high fat diet had increased serum leptin levels. The aim of the present study was to analyze the influence of essential fatty acid (EFA) deficiency on serum leptin levels in dams and their pups during the suckling period. For the last 10 days of gestation and throughout lactation, pregnant rats were fed a control or an EFA-deficient (EFAD) diet. The levels of leptin and EFA in the serum of the dams and pups were analyzed 1, 2, and 3 weeks after delivery. In parallel, serum levels of glucose and corticosterone were analyzed in the pups. Low serum leptin levels were found in the control lactating dams during the entire lactation period compared with the age-matched nonlactating animals. The leptin concentrations in the lactating dams fed the EFAD diet were lower compared with those fed the control diet. The serum leptin levels of suckling pups from dams on the EFAD diet were markedly decreased compared with controls (P < 0.05). The reduced serum leptin levels could not be explained by nutritional restriction as evaluated by serum levels of glucose and corticosterone. These results indicate the importance of the EFA composition of the maternal diet for serum leptin levels in both dams and pups. EFA deficiency in lactating dams may cause long-term effects on the pups through dysregulation of leptin and leptin-dependent functions. -- Korotkova, M., B. Gabrielsson, L. A. Hanson, and B. Strandvik. Maternal essential fatty acid deficiency depresses serum leptin levels in suckling rat pups. J. Lipid Res. 2001. 42: 359--365.  (+info)

Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. (46/510)

The loss of docosahexaenoic acid (DHA) from the retina or brain has been associated with a loss in nervous-system function in experimental animals, as well as in human infants fed vegetable oil-based formulas. The reversibility of the loss of DHA and the compensation by an increase in the n-6 docosapentaenoic acid (DPAn-6) was studied in young adult rats. Long-Evans rats were subjected to a very low level of n-3 fatty acids through two generations. The F2 generation, n-3-deficient animals at 7 weeks of age were provided a repletion diet containing both alpha-linolenate and DHA. A separate group of F2 generation rats had been maintained on an n-3-adequate diet of the same composition. Tissues from the brain, retina, liver, and serum were collected on weeks 0, 1, 2, 4, and 8 from both groups of animals. The concentrations of DHA, DPAn-6, and other fatty acids were determined and the rate of recovery and length of time needed to complete DHA recovery were determined for each tissue. The DHA level in the brain at 1 and 2 weeks after diet reversal was only partially recovered, rising to approximately 20% and 35%, respectively, of the n-3-adequate group level. Full recovery was not obtained until 8 weeks after initiation of the repletion diet. Although the initial rate of retinal DHA accretion was greater than that of brain DHA, the half-time for DHA recovery was only marginally greater. On the other hand, the levels of DHA in the serum and liver were approximately 90% and 100% replaced, respectively, within 2 weeks of diet reversal. A consideration of the total amounts and time courses of DHA repleted in the nervous system compared with the liver and circulation suggests that transport-related processes may limit the rate of DHA repletion in the retina and brain.-- Moriguchi, T., J. Loewke, M. Garrison, J. N. Catalan, N. Salem, Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 2001. 42: 419--427.  (+info)

Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. (47/510)

BACKGROUND: Arachidonic acid (AA) and docosahexaenoic acid (DHA) are important for growth and neural development. trans Fatty acids (TFAs) may inhibit desaturation of linoleic acid (LA) and alpha-linolenic acid (ALA) to AA and DHA, respectively. Conjugated linoleic acids (CLAs) also alter lipid metabolism and body fat. OBJECTIVE: We determined the associations of birth outcome with maternal and infant plasma concentrations of TFAs, CLAs, AA, and DHA. DESIGN: In healthy women, we sampled maternal blood at 35 wk gestation (n = 58) and umbilical cord blood at birth (n = 70). RESULTS: Mean (+/- SEM) TFA concentrations (% by wt) in infant plasma were as follows: triacylglycerol, 2.83 +/- 0.19 (range: 0.63-12.79); phospholipid, 0.67 +/- 0.03 (0.11-1.33); and cholesteryl ester, 2.04 +/- 0.01 (0.86-4.24). LA, AA, DHA, TFA, and CLA concentrations in infant phospholipids correlated with the same fatty acid in maternal plasma phospholipids (n = 44; P < 0.05). Infant plasma cholesteryl ester and triacylglycerol TFAs and cholesteryl ester CLAs (r = -0.33, -0.42, and -0.49, respectively) were significantly inversely related to length of gestation. Triacylglycerol and cholesteryl ester AA were positively related to length of gestation (r = 0.41 and 0.37, respectively) and birth weight (r = 0.27 and 0.23, respectively). Inverse correlations occurred between infant plasma TFA and DHA concentrations in triacylglycerols (r = -0.33) and between TFA and AA concentrations in cholesteryl esters (r = -0.23). CONCLUSION: The results suggest possible important effects of TFAs and of AA on fetal growth and length of gestation.  (+info)

Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo. A stable isotope tracer study. (48/510)

Using [13C]-tracers and direct fetal doses, we show for the first time that the fetal primate converts alpha-linolenic acid (18:3) to docosahexaenoic acid (22:6) in vivo, and we estimate the relative bioefficacy of the two substrates for brain 22:6 accretion. Pregnant female baboons consumed a diet free of long chain polyunsaturates (LCP), with n-6/n-3 ratio of 10/1. In the third trimester of pregnancy (normal gestation = 182 days), they were instrumented with chronic indwelling catheters in the maternal femoral artery and the fetal jugular artery. Doses of either [U-13C]-18:3 (18:3*, n = 3) or [U-13C]-22:6 (22:6*, n = 2) were administered directly to the fetus. Blood was collected from fetus and mother, and the fetus was taken by cesarean section when electromyographic activity indicated that parturition was imminent. Fetal liver, brain, retina, and retinal pigment epithelium (RPE) were collected, and (13)C fatty acids determined. In 18:3*- dosed animals, labeled n-3 LCP were detected in fetal plasma at 1 day post-dose and peaked at 2;-3 days; brain 22:6* was constant at 3, 5, and 9 days post-dose, at 0.57 +/- 0.03 percent of dose (%Dose). In 22:6*- dosed animals, brain 22:6* was similar at 3 and 9 days post-dose (4.64 +/- 0.43%Dose). From these data, we estimate that preformed 22:6 in the fetal bloodstream is 8-fold more efficacious for brain 22:6 accretion than is 18:3. Retina 22:6* was stable at about 0.0008%Dose from 3 to 9 days in 18:3-dosed animals, but RPE 22:6* dropped over the period; brain results were consistent with these observations. Liver showed about 0.5%Dose in 22:6* and in intermediary n-3 fatty acid metabolites 20:5* and 22:5* at 3 days post-dose, and declined afterward. Back-transfer of labeled fatty acids to the maternal bloodstream was measurable but not sufficient to compromise the quantitative conversion data in fetuses. We conclude 1) primate fetuses have the capacity to convert 18:3 to 22:6 in vivo; 2) fetal brain 22:6* as %Dose plateaus by 3 days post-dose; 3) fetal plasma 22:6 is about 8-fold more effective as a substrate for brain 22:6 accretion compared with 18:3; and 4) the fetal liver is likely to be an important site of 18:3 to 22:6 conversion.  (+info)