Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. (57/392)

Importin-alpha is the nuclear import receptor that recognizes cargo proteins carrying conventional basic monopartite and bipartite nuclear localization sequences (NLSs) and facilitates their transport into the nucleus. Bipartite NLSs contain two clusters of basic residues, connected by linkers of variable lengths. To determine the structural basis of the recognition of diverse bipartite NLSs by mammalian importin-alpha, we co-crystallized a non-autoinhibited mouse receptor protein with peptides corresponding to the NLSs from human retinoblastoma protein and Xenopus laevis phosphoprotein N1N2, containing diverse sequences and lengths of the linker. We show that the basic clusters interact analogously in both NLSs, but the linker sequences adopt different conformations, whereas both make specific contacts with the receptor. The available data allow us to draw general conclusions about the specificity of NLS binding by importin-alpha and facilitate an improved definition of the consensus sequence of a conventional basic/bipartite NLS (KRX10-12KRRK) that can be used to identify novel nuclear proteins.  (+info)

Importin alpha-regulated nucleation of microtubules by TPX2. (58/392)

The importin alpha-regulated microtubule-associated protein TPX2 is known to be critical for meiotic and mitotic spindle formation in vertebrates, but its detailed mechanism of action and regulation is not understood. Here, the site of interaction on TPX2 for importin alpha is mapped. A TPX2 mutant that cannot bind importin alpha is constitutively active in the induction of microtubule-containing aster-like structures in Xenopus egg extract, demonstrating that no other importin alpha or RanGTPase target is required to mediate microtubule assembly in this system. Further, recombinant TPX2 is shown to induce the formation and bundling of microtubules in dilute solutions of pure tubulin. In this purified system, importin alpha prevents TPX2-induced microtubule formation, but not TPX2-tubulin interaction or microtubule bundling. This demonstrates that TPX2 has more than one mode of interaction with tubulin and that only one of these types of interaction is abolished by importin alpha. The data suggest that the critical early function in spindle formation regulated by importin alpha is TPX2-mediated microtubule nucleation.  (+info)

Signaling through Cdk2, importin-alpha and NuMA is required for H2O2-induced mitosis in primary type II pneumocytes. (59/392)

Proliferation of alveolar type II pneumocytes, the multipotent stem cells of the alveoli, has been implicated in the development of lung adenocarcinoma. Hydrogen peroxide (H(2)O(2)), a potent promoter of signaling cascades, can mediate the transmission of many intracellular signals including those involved in cell proliferation. In this study using rat primary type II pneumocytes, we demonstrate that H(2)O(2) significantly increases mitosis through a pathway that includes cyclin-dependent kinase 2 (Cdk2); importin-alpha, a nuclear trafficking regulator; and nuclear mitotic apparatus protein (NuMA), an essential component in mitotic spindle pole formation. Upon H(2)O(2) treatment, Cdk2 is phosphorylated at position thr-160 leading to increases in importin-alpha and NuMA protein levels and resulting in a significant increase of G(2)/M phase in a roscovatine-dependent manner. Type II pneumocytes transfected with NuMA cDNA also show significant increases in G(2)/M phase, NuMA, Cdk2 thr-160 and importin-alpha expression. These effects were prevented by catalase. These results demonstrate that H(2)O(2) orchestrates a complex signaling network regulating S phase entry, nuclear trafficking and spindle pole formation through activation of Cdk2, importin-alpha, and NuMA. This pathway is essential for H(2)O(2)-induced mitosis in type II pneumocytes.  (+info)

Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. (60/392)

Proteins actively transported into the nucleus via the classical nuclear import pathway contain nuclear localization signals (NLSs), which are recognized by the family of importin alpha molecules. Importin alpha contains 10 armadillo (arm) repeats, of which the N-terminal arm repeats 2-4 have been considered as the "major" NLS binding site. Interferon-activated, dimerized signal transducers and activators of transcription (STAT1 and STAT2) directly bind to importin alpha5 via a dimeric nonclassical NLS. Here we show by site-directed mutagenesis that the very C-terminal arm repeats 8 and 9 of importin alpha5 form a unique binding site for STAT1 homodimers and STAT1-STAT2 heterodimers. Influenza A virus nucleoprotein also contains a nonclassical NLS that is recognized by the C-terminal NLS binding site of importin alpha5, comprising arm repeats 7-9. Binding of influenza A virus nucleoprotein to importin alpha3 also occurs via the C-terminal arm repeats. Simian virus 40 large T antigen instead binds to the major N-terminal arm repeats of importin alpha3, indicating that one importin alpha molecule is able to use either its N- or C-terminal arm repeats for binding various NLS containing proteins.  (+info)

The role of IFNgamma nuclear localization sequence in intracellular function. (61/392)

Intracellularly expressed interferon gamma (IFNgamma) has been reported to possess biological activity similar to that of IFNgamma added to cells. This study addresses the mechanisms for such similar biological effects. Adenoviral vectors were used to express a non-secreted form of human IFNgamma or a non-secreted mutant form in which a previously demonstrated nuclear localization sequence (NLS), 128KTGKRKR134, was replaced with alanines at K and R positions. With the vector expressing non-secreted wild-type IFNgamma, biological responses normally associated with extracellular IFNgamma, such as antiviral activity and MHC class I upregulation, were observed, although the mutant IFNgamma did not possess biological activity. Intracellular human IFNgamma possessed biological activity in mouse L cells, which do not recognize extracellularly added human IFNgamma. Thus, the biological activity was not due to leakage of IFNgamma to the surroundings and subsequent interaction with the receptor on the cell surface. Biological function was associated with activation of STAT1alpha and nuclear translocation of IFNgamma, IFNGR1 and STAT1alpha. Immunoprecipitation of cellular extracts with antibody to the nuclear transporter NPI-1 showed the formation of a complex with IFNgamma-IFNGR1-STAT1alpha. To provide the physiological basis for these effects we show that extracellularly added IFNgamma possesses intracellular signaling activity that is NLS dependent, as suggested by our previous studies, and that this activity occurs via the receptor-mediated endocytosis of IFNgamma. The data are consistent with previous observations that the NLS of extracellularly added IFNgamma plays a role in IFNgamma signaling.  (+info)

Importin beta-depending nuclear import pathways: role of the adapter proteins in the docking and releasing steps. (62/392)

Nuclear imports of uridine-rich small nuclear ribonucleoprotein (U1 snRNP) and proteins with classical nuclear localization signal (cNLS-protein) are mediated by importin beta. However, due to the presence of different import signals, the adapter protein of the imported molecules and importin beta is different for each pathway. Although the adapter for cNLS-protein is importin alpha, the adapter for U1 snRNP is snurportin1 (SPN1). Herein, we show that the use of distinct adapters by importin beta results in differences at the docking and releasing step for these two import pathways. Nuclear pore complex (NPC) docking of U1 snRNP but not of cNLS-protein was inhibited by an anti-CAN/Nup214 antibody. Thus, the initial NPC-binding site is different for each pathway. Pull-down assays between immobilized SPN1 and two truncated forms of importin beta documented that SPN1 and importin alpha have different binding sites on importin beta. Importin beta fragment 1-618, which binds to SPN1 but not to importin alpha, was able to support the nuclear import of U1 snRNPs. After the translocation through the NPC, both import complexes associated with the nuclear side of the NPC. However, we found that the nature of the importin beta-binding domain of the adapters influences the release of the cargo into the nucleoplasm.  (+info)

Role of flanking sequences and phosphorylation in the recognition of the simian-virus-40 large T-antigen nuclear localization sequences by importin-alpha. (63/392)

The nuclear import of simian-virus-40 large T-antigen (tumour antigen) is enhanced via phosphorylation by the protein kinase CK2 at Ser112 in the vicinity of the NLS (nuclear localization sequence). To determine the structural basis of the effect of the sequences flanking the basic cluster KKKRK, and the effect of phosphorylation on the recognition of the NLS by the nuclear import factor importin-alpha (Impalpha), we co-crystallized non-autoinhibited Impalpha with peptides corresponding to the phosphorylated and non-phosphorylated forms of the NLS, and determined the crystal structures of the complexes. The structures show that the amino acids N-terminally flanking the basic cluster make specific contacts with the receptor that are distinct from the interactions between bipartite NLSs and Impalpha. We confirm the important role of flanking sequences using binding assays. Unexpectedly, the regions of the peptides containing the phosphorylation site do not make specific contacts with the receptor. Binding assays confirm that phosphorylation does not increase the affinity of the T-antigen NLS to Impalpha. We conclude that the sequences flanking the basic clusters in NLSs play a crucial role in nuclear import by modulating the recognition of the NLS by Impalpha, whereas phosphorylation of the T-antigen enhances nuclear import by a mechanism that does not involve a direct interaction of the phosphorylated residue with Impalpha.  (+info)

Overlapping signals for protein degradation and nuclear localization define a role for intrinsic RAG-2 nuclear uptake in dividing cells. (64/392)

Expression of the recombinase proteins RAG-1 and RAG-2 is discordant: while RAG-1 is relatively long lived, RAG-2 is degraded periodically at the G(1)-S transition. Destruction of RAG-2 is mediated by a conserved interval in the recombination-dispensable region. The need for RAG-2 to reaccumulate in the nucleus at each cell division suggested the existence of an intrinsic RAG-2 nuclear localization signal (NLS). RAG-1 or RAG-2, expressed individually, is a nuclear protein. A screen for proteins that bind the recombination-dispensable region of RAG-2 identified the nuclear transport protein Importin 5. Mutation of residues 499 to 508 in RAG-2 abolished Importin 5 binding, nuclear accumulation, and periodic degradation of RAG-2. The Importin 5 binding site overlaps an NLS, defined by mutagenesis. RAG-1 rescued the localization of degradation-defective, RAG-2 NLS mutants; this required an intact RAG-1 NLS. Mutations in RAG-2 that abolish intrinsic nuclear accumulation but spare periodic degradation impaired recombination in cycling cells; induction of quiescence restored recombination to wild-type levels. Recombination defects were correlated with a cell cycle-dependent defect in the ability of RAG-1 to rescue localization of the RAG-2 mutants. These results suggest that the intrinsic RAG-2 NLS functions in the nuclear uptake of RAG-2 following its reexpression in cycling cells.  (+info)