Interspecific infanticide and infant-directed aggression by spider monkeys (Ateles hybridus) in a fragmented forest in Colombia. (17/27)

 (+info)

Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. (18/27)

 (+info)

First report of yellow fever virus in non-human primates in the State of Parana, Brazil. (19/27)

 (+info)

Kin structure and parallel dispersal in the black-and-gold howler monkey Alouatta caraya (Platyrrhini, Atelidae). (20/27)

 (+info)

Detection of arboviruses of public health interest in free-living New World primates (Sapajus spp.; Alouatta caraya) captured in Mato Grosso do Sul, Brazil. (21/27)

 (+info)

Distribution of Mason-Pfizer virus-specific sequences in the DNA of primates. (22/27)

Iodinated Mason-Pfizer virus (MPV) 60-70S RNA has been used in molecular hybridization experiments to determine the distribution of MPV-specific proviral sequences in the DNAs of primates. Approximately 20% of the MPV genome is present as endogenous provirus in rhesus monkeys. Competitive hybridization experiments showed no homology between MPV 60-70S RNA and the 60-70S RNAs of M7, RD-114, and the simian sarcoma virus. No MPV-specific proviral sequences were detected in the DNAs of apparently normal tissues of various species of New World monkeys, apes, and humans. The part of the MPV genome that is endogenous to rhesus is also endogenous to the other species of Old World monkeys examined: baboon, African green, and patas. This was determined as a result of the following observations: (i) C(0)t(1/2) values and final extent of hybridization were the same for all four species. (ii) T(m) values of MPV 60-70S RNA and DNA of all four species were identical. (iii) The removal of MPV sequences endogenous to rhesus tissues by recycling against rhesus DNA resulted in the loss of any hybridizable MPV RNA to the DNAs of baboon, African green, and patas tissues. (iv) Mixing experiments of rhesus, African green, and baboon DNAs resulted in the same kinetics of hybridization as did rhesus DNA alone, when hybridized with MPV 60-70S RNA. These findings demonstrate that sequences that constitute an integral part of the MPV genome are conserved in the DNAs of several different species of Old World monkeys.  (+info)

Fate of a redundant gamma-globin gene in the atelid clade of New World monkeys: implications concerning fetal globin gene expression. (23/27)

Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression.  (+info)

Evolution of pro-protamine P2 genes in primates. (24/27)

Protamines P1 and P2 form a family of small basic peptides that represent the major sperm proteins in placental mammals. In human and mouse protamine P2 is one of the most abundant sperm proteins. The protamine P2 gene codes for a P2 precursor, pro-P2 which is later processed by proteolytic cleavages in its N-terminal region to form the mature P2 protamines. We have used polymerase chain amplification to directly sequence the pro-P2 genes of the five major primate families: red howler (Alouatta seniculus) is a New World monkey (Cebidae); the two macaque species, Macaca mulatta and M. nemistrina are Old World monkeys (Cercopithecidae), the gibbon, Hylobates lar, represents one branch of the apes (Hylobatidae); the orangutan, Pongo pygmaeus, gorilla, Gorilla gorilla and two species of chimpanzee Pan paniscus and Pan troglodytes represent a second ape family (Pongidae). These pro-P2 genes are compared with that of human [Domenjoud, L., Nussbaum, G., Adham, I. M., Greeske, G. & Engel, W. (1990) Genomics 8, 127-133]. The overall size and organization of the genes are conserved within the group. The mean length of pro-P2 is 101 residues, with an increase to 102 in M. nemistrina and a decrease to 99 residues in red howler (A. seniculus). In gorilla and red howler one of two 79-bp tandem repeats that occurs 3' of the gene is deleted. Of the 101 deduced amino acids examined, an amino acid change occurs in one or more primates at 45 positions. Considering only the most recently diverged group, the human/gorilla/chimpanzee clade, this represents a very high mutation rate of 0.99 changes/100 sites in 10(6) years. This rapid mutation rate is characteristic of both members of the protamine gene family, P1 and P2. Consideration of the variable nature of the sequences at the multiple sites of proteolysis during the processing of the pro-P2 indicates either that there are several processing enzymes of differing specificities, or more likely that the folded structure of the pro-P2 limits accessibility of a non-specific protease to certain exposed sites.  (+info)