Halogen-free water-immiscible ionic liquids based on tetraoctylammonium cation and dodecylsulfate and dodecylbenzenesulfonate anions, and their application as chelate extraction solvent. (41/199)

The tetraoctylammonium cation forms water-immiscible room temperature ionic liquids with dodecylsulfate and dodecylbenzenesulfonate anions. The ionic liquids are halogen-free and can be considered environmentally friendly solvents. At 25 degrees C, the solubilities of water in tetraoctylammonium dodecylsulfate and tetraoctylammonium dodecylbenzenesulfonate were 2.8 and 4.0%, respectively, and the densities were 0.92 and 0.93 g cm(-3). The ionic liquids formed stable interfaces with water at 25 degrees C. The possible use of tetraoctylammonium dodecylsulfate as chelate extraction solvent was evaluated by using 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione as extractant. Tetraoctylammonium dodecylsulfate showed high extraction performance for divalent transition metal cations.  (+info)

The influence of charge on the effects of n-octyl derivatives on sodium current inactivation in rat sensory neurones. (42/199)

1. The whole-cell patch-clamp technique was used to determine the actions of n-octyl sulphate (OS-) anions and n-octyl trimethylammonium (OTMA+) cations on sodium current steady-state inactivation and peak amplitude in cells isolated from dorsal root ganglia of neonatal rats and maintained in short-term tissue culture. This paper concentrates on the effects of external addition but the actions of internal OS- and OTMA+ are briefly considered. 2. The main action of external OS- was to cause a hyperpolarizing shift in the voltage dependence of the steady-state inactivation parameter, h infinity. At 1-6 mM OS- caused a shift in the mid-point of the h infinity curve of around -30 mV. The shape of the h infinity curve was altered in a concentration-dependent manner. Internal OS- had no discernible effect on the shape or position of the h infinity curve. 3. External OS- produced a relatively small (less than 25%) reduction in the maximum current achieved following pre-pulses sufficiently negative to remove resting steady-state inactivation. 4. By contrast, external OTMA+ had little effect on the voltage dependence of h infinity and produced a small, but significant, increase in the maximum sodium current. 2 mM-external OTMA+ moved the mid-point of the h infinity curve (Vh) 5 mV in the depolarizing direction (relative to the mean of control and reversal curves) and increased the maximum current by 13%. One millimolar internal OTMA+ induced a frequency-dependent current block. 5. Raising the external calcium concentration from 2 to 20 mM (in the presence of 2 mM-magnesium and 5 mM-cobalt) caused an 18 mV depolarizing shift in Vh, consistent with a reduction in the negativity of an external surface charge. The maximum current was reduced by 22%. 6. One millimolar OS- reduced the surface potential of egg phosphatidylcholine (EPC) monolayers (at an air-0.5 M-NaCl interface) by 35 mV but 1 or 2 mM-OTMA+ produced only a 2-3 mV increase. The quantitative agreement between the effects of OS-, on Vh in the rat and on monolayer surface potential, decreased with increasing concentration.(ABSTRACT TRUNCATED AT 400 WORDS)  (+info)

Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. (43/199)

Administration of ammonium salts of perfluorooctanoate (PFOA) to rats results in peroxisome proliferation and benign liver tumors, events associated with activation of the nuclear receptor (NR) peroxisome proliferator-activated receptor-alpha (PPARalpha). Due to its fatty acid structure, PFOA may activate other NRs, such as PPARbeta, PPARgamma, liver X receptor (LXR), or retinoid X receptor (RXR). In this study, the activation of human, mouse, and rat PPARalpha, PPARbeta, PPARgamma, LXRbeta, and RXRalpha by PFOA (including its linear and branched isomers) and perfluorooctane sulfonate (PFOS) was investigated and compared to several structural classes of natural fatty acids and appropriate positive control ligands. An NR ligand-binding domain/Gal4 DNA-binding domain chimeric reporter system was used. Human, mouse, and rat PPARalpha were activated by PFOA isomers and PFOS. PPARbeta was less sensitive to the agents tested, with only PFOA affecting the mouse receptor. PFOA and PFOS also activated human, mouse, and rat PPARgamma, although the maximum induction of PPARgamma was much less than that seen with rosiglitazone, suggesting that PFOA and PFOS are partial agonists of this receptor. Neither LXRbeta nor the common heterodimerization partner RXRalpha was activated by PFOA in any species examined. Taken together, these data show that of the NRs studied, PPARalpha is the most likely target of PFOA and PFOS, although PPARgamma is also activated to some extent. Compared to naturally occurring long-chain fatty acids, e.g. linoleic and alpha-linolenic acids, these perfluorinated fatty acid analogs were more selective and less potent in their activation of the NRs.  (+info)

Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). (44/199)

Perfluorooctane-1-sulfonic acid (PFOS) is emerging as an important persistent environmental pollutant. To gain insight into the interaction of PFOS with biological systems, the mixing behavior of dipalmitoylphosphatidylcholine (DPPC) with PFOS was studied using differential scanning calorimetry (DSC) and fluorescence anisotropy measurements. In the DSC experiments the onset temperature of the DPPC pretransition (Tp) decreased with increasing PFOS concentration, disappearing at XDPPC < or = 0.97. The main DPPC phase transition temperature showed a depression and peak broadening with increasing mole fraction of PFOS in both the DSC and the fluorescence anisotropy studies. From the melting point depression in the fluorescence anisotropy studies, which was observed at a concentration as low as 10 mg/L, an apparent partition coefficient of K = 5.7 x 10(4) (mole fraction basis) was calculated. These results suggest that PFOS has a high tendency to partition into lipid bilayers. These direct PFOS-DPPC interactions are one possible mechanism by which PFOS may contribute to adverse effects, for example neonatal mortality, in laboratory studies and possibly in humans.  (+info)

Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase. (45/199)

Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis in which coenzyme B and methyl-coenzyme M are converted to methane and the heterodisulfide, CoMS-SCoB. MCR also appears to initiate anaerobic methane oxidation (reverse methanogenesis). At the active site of MCR is coenzyme F430, a nickel tetrapyrrole. This paper describes the reaction of the active MCR(red1) state with the potent inhibitor, 3-bromopropanesulfonate (BPS; I50 = 50 nM) by UV-visible and EPR spectroscopy and by steady-state and rapid kinetics. BPS was shown to be an alternative substrate of MCR in an ionic reaction that is coenzyme B-independent and leads to debromination of BPS and formation of a distinct state ("MCR(PS)") with an EPR signal that was assigned to a Ni(III)-propylsulfonate species (Hinderberger, D., Piskorski, R. P., Goenrich, M., Thauer, R. K., Schweiger, A., Harmer, J., and Jaun, B. (2006) Angew. Chem. Int. Ed. Engl. 45, 3602-3607). A similar EPR signal was generated by reacting MCR(red1) with several halogenated sulfonate and carboxylate substrates. In rapid chemical quench experiments, the propylsulfonate ligand was identified by NMR spectroscopy and high performance liquid chromatography as propanesulfonic acid after protonolysis of the MCR(PS) complex. Propanesulfonate formation was also observed in steady-state reactions in the presence of Ti(III) citrate. Reaction of the alkylnickel intermediate with thiols regenerates the active MCR(red1) state and eliminates the propylsulfonate group, presumably as the thioether. MCR(PS) is catalytically competent in both the generation of propanesulfonate and reformation of MCR(red1). These results provide evidence for the intermediacy of an alkylnickel species in the final step in anaerobic methane oxidation and in the initial step of methanogenesis.  (+info)

Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. (46/199)

This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in Dulbecco's Minimal Essential Medium (DMEM) with fetal bovine serum in 96-well plates and transfected with mouse or human PPARalpha, beta/delta, or gamma reporter plasmids. Transfected cells were exposed to PFOA (0.5-100 microM), PFOS (1-250 microM), positive controls (i.e., known agonists and antagonists), and negative controls (i.e., DMEM, 0.1% water, and 0.1% dimethyl sulfoxide). Following treatment for 24 h, activity was measured using the Luciferase reporter assay. In this assay, PFOA had more transactivity than PFOS with both the mouse and human PPAR isoforms. PFOA significantly increased mouse and human PPARalpha and mouse PPARbeta/delta activity relative to vehicle. PFOS significantly increased activation of mouse PPARalpha and PPARbeta/delta isoforms. No significant activation of mouse or human PPARgamma was observed with PFOA or PFOS. The PPARalpha antagonist, MK-886, significantly suppressed PFOA and PFOS activity of mouse and human PPARalpha. The PPARgamma antagonist, GW9662, significantly suppressed PFOA activity on the human isoform. In conclusion, this study characterized the dose response and differential activation of mouse and human PPARalpha, beta/delta, gamma by PFOA and PFOS. While this model allows opportunities to compare potential activation by perfluoroalkyl acids, it only evaluates the interaction and activation of the PPAR reporter constructs and is not necessarily predictive of a toxicological response in vivo.  (+info)

The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. (47/199)

Perfluorooctanesulfonate and its salts (PFOS) are derived from perfluorooctanesulfonyl fluoride, the basic chemical building block for many sulfonyl-based fluorochemicals used as surfactants and for their repellent properties. PFOS is highly persistent in the environment and has a long serum elimination half-life in both animals and humans. PFOS has been detected globally in the environment and in blood serum in various populations throughout the world, with the majority of human sampling done in the United States and Japan. The mechanisms and pathways leading to the presence of PFOS in human blood are not well characterized but likely involve both direct exposures to PFOS or chemicals and materials that can degrade to PFOS, either in the environment or from industrial and commercial uses. In 2000 the 3M Company, a major manufacturer, announced a phaseout of PFOS-related materials. Animal studies indicate that PFOS is well absorbed orally and distributes mainly in blood serum and the liver. Several repeat-dose toxicology studies in animals consistently demonstrated that the liver is the primary target organ. In addition there is a steep dose response for mortality in sexually mature rats and primates as well as in neonatal rats and mice exposed in utero. Several biomonitoring research needs that have been identified on PFOS include additional data from general populations pertaining to other matrices besides blood; matched serum and urine samples from humans and research animals; and comparison of whole blood, serum, and plasma concentrations from the same individuals.  (+info)

Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. (48/199)

Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse effects by inhibiting pulmonary surfactant. To gain further insights in this potential mechanism of toxicity, we investigated the interaction of PFOS potassium salt with dipalmitoylphosphatidylcholine (DPPC) - the major component of pulmonary surfactant - using steady-state fluorescence anisotropy spectroscopy and DSC (differential scanning calorimetry). In addition, we investigated the interactions of two structurally related compounds, perfluorooctanoic acid (PFOA) and octanesulfonic acid (OS) potassium salt, with DPPC. In the fluorescence experiments a linear depression of the main phase transition temperature of DPPC (T(m)) and an increased peak width was observed with increasing concentration of all three compounds, both using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) as fluorescent probes. PFOS caused an effect on T(m) and peak width at much lower concentrations because of its increased tendency to partition onto DPPC bilayers, i.e., the partition coefficients decrease in the K(PFOS)>K(PFOA)>>K(OS). Similar to the fluorescence anisotropy measurements, all three compounds caused a linear depression in the onset of the main phase transition temperature and a significant peak broadening in the DSC experiments, with PFOS having the most pronounced effect of the peak width. The effect of PFOS and other fluorinated surfactants on DPPC in both mono- and bilayers may be one mechanism by which these compounds cause adverse biological effects.  (+info)