Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. (9/908)

We examined physiological adaptations which allow the psychrotroph Rhodococcus sp. strain Q15 to assimilate alkanes at a low temperature (alkanes are contaminants which are generally insoluble and/or solid at low temperatures). During growth at 5 degrees C on hexadecane or diesel fuel, strain Q15 produced a cell surface-associated biosurfactant(s) and, compared to glucose-acetate-grown cells, exhibited increased cell surface hydrophobicity. A transmission electron microscopy examination of strain Q15 grown at 5 degrees C revealed the presence of intracellular electron-transparent inclusions and flocs of cells connected by an extracellular polymeric substance (EPS) when cells were grown on a hydrocarbon and morphological differences between the EPS of glucose-acetate-grown and diesel fuel-grown cells. A lectin binding analysis performed by using confocal scanning laser microscopy (CSLM) showed that the EPS contained a complex mixture of glycoconjugates, depending on both the growth temperature and the carbon source. Two glycoconjugates [beta-D-Gal-(1-3)-D-GlcNAc and alpha-L-fucose] were detected only on the surfaces of cells grown on diesel fuel at 5 degrees C. Using scanning electron microscopy, we observed strain Q15 cells on the surfaces of octacosane crystals, and using CSLM, we observed strain Q15 cells covering the surfaces of diesel fuel microdroplets; these findings indicate that this organism assimilates both solid and liquid alkane substrates at a low temperature by adhering to the alkane phase. Membrane fatty acid analysis demonstrated that strain Q15 adapted to growth at a low temperature by decreasing the degree of saturation of membrane lipid fatty acids, but it did so to a lesser extent when it was grown on hydrocarbons at 5 degrees C; these findings suggest that strain Q15 modulates membrane fluidity in response to the counteracting influences of low temperature and hydrocarbon toxicity.  (+info)

Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. (10/908)

An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors. Sulfate, sulfite, and thiosulfate were used as electron acceptors, but sulfur, nitrite, and nitrate were not. Phenotypic characterization and phylogenetic analysis based on 16S rRNA gene sequence indicate that AK-01 is most closely related to the genera Desulfosarcina, Desulfonema, and Desulfococcus in the delta subdivision of the class Proteobacteria. It is phenotypically and phylogenetically different from strains Hxd3 and TD3, two previously reported isolates of alkane-degrading, sulfate-reducing bacteria. The alkanes tested to support growth of AK-01 had chain lengths of C13 to C18. 1-Alkenes (C15 and C16) and 1-alkanols (C15 and C16) also supported growth. The doubling time for growth on hexadecane was 3 days, about four times longer than that for growth on hexadecanoate. Mineralization of hexadecane was indicated by the recovery of 14CO2 from cultures grown on [1-14C]hexadecane. Degradation of hexadecane was dependent on sulfate reduction. The stoichiometric ratio (as moles of sulfate reduced per mole of hexadecane degraded) was 10.6, which is very close to the theoretical ratio of 12.25, assuming a complete oxidation to CO2. Anaerobic alkane degradation by sulfate reducers may be a more widespread phenomenon than was previously thought.  (+info)

The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR. (11/908)

Alkanes are oxidized in Acinetobacter sp. strain ADP1 by a three-component alkane monooxygenase, composed of alkane hydroxylase, rubredoxin, and rubredoxin reductase. rubA and rubB encode rubredoxin and a NAD(P)H-dependent rubredoxin reductase. We demonstrate here that single base pair substitutions in rubA or rubB lead to defects in alkane degradation, showing that both genes are essential for alkane utilization. Differences in the degradation capacity for hexadecane and dodecane in these mutants are discussed. Two genes, estB and oxyR, are located downstream of rubB, but are not necessary for alkane degradation. estB encodes a functional esterase. oxyR encodes a LysR-type transcriptional regulator, conferring resistance to hydrogen peroxide. rubA, rubB, estB, and oxyR constitute an operon, which is constitutively transcribed from a sigma70 promoter, and an estB-oxyR containing message is also transcribed from an internal promoter.  (+info)

Immunochemical detection of oxalate monoalkylamide, an ascorbate-derived Maillard reaction product in the human lens. (12/908)

Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  (+info)

Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes. (13/908)

Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes.  (+info)

Molecular dynamics simulations of supported phospholipid/alkanethiol bilayers on a gold(111) surface. (14/908)

Molecular dynamics simulations have been used to investigate the structure of hybrid bilayers (HB) formed by dipalmitoylphosphatidylcholine (DPPC) lipid monolayers adsorbed on a hydrophobic alkanethiol self-assembled monolayer (SAM). The HB system was studied at 20 degrees C and 60 degrees C, and the results were compared with recent neutron reflectivity measurements (Meuse, C. W., S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant. 1998. Biophys. J. 74:1388) and previous simulations of hydrated multilamellar bilayers (MLB) of DPPC (Tu, K., D. J. Tobias, and M. L. Klein. 1995. Biophys. J. 69:2558; and 1996. 70:595). The overall structures of the HBs are in very good agreement with experiment. The structure of the SAM monolayer is hardly perturbed by the presence of the DPPC overlayer. The DPPC layer presents characteristics very similar to the MLB gel phase at low temperature and to the liquid crystal phase at high temperature. Subtle changes have been found for the lipid/water interface of the HBs compared to the MLBs. The average phosphatidylcholine headgroup orientation is less disordered, and this produces changes in the electric properties of the HB lipid/water interface. These changes are attributed to the fact that the aqueous environment of the lipids in these unilamellar films is different from that of MLB stacks. Finally, examination of the intramolecular and whole-molecule dynamics of the DPPC molecules in the fluid phase HB and MLB membranes revealed that the reorientations of the upper part of the acyl chains (near the acyl ester linkage) are slower, the single molecule protrusions are slightly damped, and the lateral rattling motions are significantly reduced in the HB compared with the MLB.  (+info)

Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. (15/908)

We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n-alkane-assimilating yeast Yarrowia lipolytica, encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was determined as a function of time after induction and of substrate chain length. Single null mutations did not affect growth but affected the chain length preference of acyl-CoA oxidase activity, as evidenced by a chain length specificity for Aox2 and Aox3. Aox2 was shown to be a long-chain acyl-CoA oxidase and Aox3 was found to be active against short-chain fatty acids, whereas Aox5 was active against molecules of all chain lengths. Mutations in Aox4 and Aox5 resulted in an increase in total Aox activity. The growth of mutant strains was analyzed. In the presence of POX1 only, strains did not grow on fatty acids, whereas POX4 alone elicited partial growth, and the growth of the double POX2-POX3-deleted mutant was normal excepted on plates containing oleic acid as the carbon source. The amounts of Aox protein detected by Western blotting paralleled the Aox activity levels, demonstrating the regulation of Aox in cells according to the POX genotype.  (+info)

Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure. (16/908)

The loss of epithelial barrier integrity in bronchial and bronchiolar airways may be an initiating factor in the observed onset of toxicant-induced lung injuries. Acute 1-h inhalation exposures to aerosolized jet propulsion fuel 8 (JP-8) have been shown to induce cellular and morphological indications of pulmonary toxicity that was associated with increased respiratory permeability to 99mTc-DTPA. To address the hypothesis that JP-8 jet fuel-induced lung injury is initiated through a disruption in the airway epithelial barrier function, paracellular mannitol flux of BEAS-2B human bronchial epithelial cells was measured. Incubation of confluent cell cultures with non-cytotoxic concentrations of JP-8 or n-tetradecane (C14), a primary constituent of JP-8, for a 1-h exposure period resulted in dose-dependent increases of paracellular flux. Following exposures of 0.17, 0.33, 0.50, or 0.67 mg/ml, mannitol flux increased above vehicle controls by 10, 14, 29, and 52%, respectively, during a 2-h incubation period immediately after each JP-8 exposure. C14 caused greater mannitol flux increases of 37, 42, 63, and 78%, respectively, following identical exposure conditions. The effect on transepithelial mannitol flux reached a maximum at 12 h and spontaneously reversed to control values over a 48-h recovery period, for both JP-8 and C14 exposure. These data indicate that non-cytotoxic exposures to JP-8 or C14 exert a noxious effect on bronchial epithelial barrier function that may preclude pathological lung injury.  (+info)