Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. (9/239)

Vitrification of hamster 2-cell embryos impairs the activity of both the Na(+)/H(+) antiporter and HCO(3)(-)/Cl(-) exchanger; the two transport proteins responsible for the regulation of intracellular pH (pHi). The activities of both the Na(+)/H(+) antiporter and HCO(3)(-)/Cl(-) exchanger were significantly reduced at 4 h following warming compared to freshly collected embryos. Normal levels of activity of both transporters were not restored until 6 h after warming. Thus, cryopreservation of cleavage stage hamster embryos has a detrimental effect on their ability to maintain intracellular ionic homeostasis. Impairment of these pHi regulatory proteins resulted in the pHi of embryos being significantly elevated from the control values of 1.2 to 7.35 for approximately 4 h after warming. In addition, an elevated pHi value significantly impaired oxidative metabolism. Therefore, the loss in developmental competence of embryos following cryopreservation may in part be explained by a reduced ability to regulate intracellular pH that results in perturbations in metabolism and disruption of energy production.  (+info)

Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. (10/239)

The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest postingestion, and during constant rate cycling at three stages (15 min each): 30, 60, 75% of maximal O(2) uptake (VO(2 max)). Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ALK resulted in significantly (P < 0.05) higher intramuscular Lac(-) concentration ([Lac(-)]; ALK 72.8 vs. CON 65.2 mmol/kg dry wt), arterial whole blood [Lac(-)] (ALK 8.7 vs. CON 7.0 mmol/l), and leg Lac(-) efflux (ALK 10.0 vs. CON 4.2 mmol/min) at 75% VO(2 max). The increased intramuscular [Lac(-)] resulted from increased pyruvate production due to stimulation of glycogenolysis at the level of Phos a and phosphofructokinase due to allosteric regulation mediated by increased free ADP (ADP(f)), free AMP (AMP(f)), and free P(i) concentrations. PDH(a) increased with ALK at 60% VO(2 max) but was similar to CON at 75% VO(2 max). The increased PDH(a) may have resulted from alterations in the acetyl-CoA, ADP(f), pyruvate, NADH, and H(+) concentrations leading to a lower relative activity of PDH kinase, whereas the similar values at 75% VO(2 max) may have reflected maximal activation. The results demonstrate that imposed metabolic alkalosis in skeletal muscle results in acceleration of glycogenolysis at the level of Phos relative to maximal PDH activation, resulting in a mismatch between the rates of pyruvate production and oxidation resulting in an increase in Lac(-) production.  (+info)

Renal CO2 production from glutamine and lactate as a function of arterial perfusion pressure in dog. (11/239)

The energy cost of renal function in the intact kidney of the dog was assessed at a series of arterial perfusion pressures. Pressure was varied by partially inflating a balloon at the tip of a catheter positioned in the aorta above the origins of the renal arteries. Either L-[U-14C]-lactate was infused intravenously in tracer amounts throughout each experiment. Total renal CO2 production and 14CO2 production from each isotope permitted assessment of total renal oxidative metabolism and the proportions derived from the two major substrates of the kidney. Stepwise inflation of the aortic balloon progressively lowered glomerular filtration rate, renal blood inflow, filtered and consequently reabsorbed Na+, total renal CO2 production, and 14CO2 derived from glutamine and lactate. The percent of total CO2 derived from lactate decreased more or less in proportion to the decrease in percent of total CO2 produced. Results were consistent with the view that reabsorption of sodium is the major energy sink of the kidney. They suggest that the oxidation of glutamine supplies energy for tubular transport and basal demands such as synthesis of hormones and maintenance of structure, whereas the oxidation of lactate supplies energy mainly for transport activities.  (+info)

Evidence for control of adenosine metabolism in rat oxidative skeletal muscle by changes in pH. (12/239)

1. We investigated the effects of pH elevation or depression on adenosine output from buffer-perfused rat gracilis muscle, and kinetic properties of adenosine-forming enzymes, 5'-nucleotidase (5'N) and non-specific phosphatase (PT), and adenosine-removing enzymes, adenosine kinase (AK) and adenosine deaminase (AD), in homogenates of muscle. 2. Depression of the perfusion buffer pH from 7.4 to 6.8, by addition of sodium acetate, reduced arterial perfusion pressure from 8.44 +/- 1.44 to 7.33 +/- 0.58 kPa, and increased adenosine output from 35 +/- 5 to 56 +/- 6 pmol min-1 (g wet wt muscle)-1 and AMP output from 1.8 +/- 0.3 to 9.1 +/- 3.9 pmol min-1 (g wet wt muscle)-1. 3. Elevation of the buffer pH to 7.8, by addition of ammonium chloride, reduced arterial perfusion pressure from 8.74 +/- 0.57 to 6.96 +/- 1.37 kPa, and increased adenosine output from 25 +/- 5 to 47 +/- 8 pmol min-1 (g wet wt muscle)-1 and AMP output from 3.7 +/- 1.1 to 24.6 +/- 6.8 pmol min-1 (g wet wt muscle)-1. 4. Activity of membrane-bound 5'N was an order of magnitude higher than that of either cytosolic 5'N or PT: pH depression reduced the K(m) of 5'N, which increased its capacity to form adenosine by 10-20% for every 0.5 unit decrease inpH within the physiological range. PT was only found in the membrane fraction: its contribution to extracellular adenosine formation increased from about 5% at pH 7.0 to about 15% at pH 8.0. 5. Cytosolic 5'N had a low activity, which was unaffected by pH; the rate of intracellular adenosine formation was an order of magnitude lower than the rate of adenosine removal by adenosine kinase or adenosine deaminase, which were both exclusively intracellular enzymes. 6. We conclude that (i) adenosine is formed in the extracellular compartment of rat skeletal muscle, principally by membrane-bound 5'N, where it is protected from enzymatic breakdown; (ii) adenosine is formed intracellularly at a very low rate, and is unlikely to leave the cell; (iii) enhanced adenosine formation at low pH is driven by an increased extracellular AMP concentration and an increased affinity of membrane-bound 5'N for AMP; (iv) enhanced adenosine formation at high pH is driven solely by the elevated extracellular AMP concentration, since the catalytic capacity of membrane 5'N is reduced at high pH.  (+info)

Intracellular pH regulation in human preimplantation embryos. (13/239)

We report here that intracellular pH (pH(i)) in cleavage-stage human embryos (2-8-cell) is regulated by at least two mechanisms: the HCO(3)(-)/Cl(-) exchanger (relieves alkalosis) and the Na(+)/H(+) antiporter (relieves acidosis). The mean pH(i) of cleavage-stage embryos was 7.12 +/- 0.008 (n = 199) with little variation between different stages. Embryos demonstrated robust recovery from alkalosis that was appropriately Cl(-)-dependent, indicating the presence of the HCO(3)(-)/Cl(-) exchanger. This was further confirmed by measuring the rate of intracellular alkalinization upon Cl(-) removal, which was markedly inhibited by the anion transport inhibitor, 4,4'-diisocyanatostilbene-2,2'-disulphonic acid, disodium salt. The set-point of the HCO(3)(-)/Cl(-) exchanger was between pH(i) 7.2 and 7.3. Embryos also exhibited Na(+)-dependent recovery from intracellular acidosis. Na(+)/H(+) antiporter activity appeared to regulate recovery up to about pH(i) 6.8; this recovery was HCO(3)(-)-independent and amiloride-sensitive, with a pH(i) set-point of approximately 6.8-6.9. A second system that was both Na(+)- and HCO(3)(-)-dependent appeared to mediate further recovery from acidosis up to about pH(i) 7.1. Thus, pH(i) of early human preimplantation embryos appears to be regulated by opposing mechanisms (HCO(3)(-)/Cl(-) exchanger, Na(+)/H(+) antiporter, and possibly a third acid-alleviating transporter that was both Na(+)- and HCO(3)(-)-dependent) resulting in the maintenance of pH(i) within a narrow range.  (+info)

Mediators of alkalosis-induced relaxation of piglet pulmonary veins. (14/239)

Pulmonary venous constriction leads to significant pulmonary hypertension and increased edema formation in several models using newborns. Although alkalosis is widely used in treating neonatal and pediatric pulmonary hypertension, its effects on pulmonary venous tone have not previously been directly measured. This study sought to determine whether alkalosis caused pulmonary venous relaxation and, if so, to identify the mediator(s) involved. Pulmonary venous rings (500-microm external diameter) were isolated from 1-wk-old piglets and precontracted with the thromboxane mimetic U-46619. Responses to hypocapnic alkalosis were then measured under control conditions after inhibition of endothelium-derived modulator activity or K(+) channels. In control rings, alkalosis caused a 34.4 +/- 4.8% decrease in the U-46619-induced contraction. This relaxation was significantly blunted in rings without functional endothelium and in rings treated with nitric oxide synthase or guanylate cyclase inhibitors. However, neither cyclooxygenase inhibition nor voltage-dependent, calcium-dependent, or ATP-dependent K(+)-channel inhibitors altered alkalosis-induced relaxation. These data suggest that alkalosis caused significant dilation of piglet pulmonary veins that was mediated by the nitric oxide-cGMP pathway.  (+info)

Liddle's syndrome: a report in a middle-aged woman. (15/239)

A 54-year-old woman with diabetes mellitus was hospitalized with generalized edema and weakness. She was also found to have hypertension, hypokalemia and metabolic alkalosis. Detailed examination showed subnormal plasma renin activity and plasma aldosterone concentration. Adrenal CT scanning revealed no adrenal tumor. A successful treatment with amiloride established the diagnosis of Liddle's syndrome for the patient. Liddle's syndrome, a rare hereditary disease usually found in young patients, should be considered in the differential diagnosis of hypertension even in elderly individuals.  (+info)

Modulation of spreading depression by changes in extracellular pH. (16/239)

Spreading depression (SD) and related phenomena have been implicated in hypoxic-ischemic injury. In such settings, SD occurs in the presence of marked extracellular acidosis. SD itself can also generate changes in extracellular pH (pH(o)), including a pronounced early alkaline shift. In a hippocampal slice model, we investigated the effect of interstitial acidosis on the generation and propagation of SD in the CA1 stratum radiatum. In addition, a carbonic anhydrase inhibitor (benzolamide) was used to decrease buffering of the alkaline shift to investigate its role in the modulation of SD. pH(o) was lowered by a decrease in saline HCO(3)(-) (from 26 to 13 to 6.5 mM at 5% CO(2)), or by an increase in the CO(2) content (from 5 to 15% in 26 mM HCO(3)(-)). Recordings with pH microelectrodes revealed respective pHo values of 7.23 +/- 0. 13, 6.95 +/- 0.10, 6.67 +/- 0.09, and 6.97 +/- 0.12. The overall effect of acidosis was an increase in the threshold for SD induction, a decrease in velocity, and a shortened SD duration. This inhibition was most pronounced at the lowest pH(o) (in 6.5 mM HCO(3)(-)) where SD was often blocked. The effects of acidosis were reversible on return to control saline. Benzolamide (10 microM) caused an approximate doubling of the early alkaline shift to an amplitude of 0.3-0.4 U pH. The amplified alkalosis was associated with an increased duration and/or increased velocity of the wave. These effects were most pronounced in acidic media (13 mM HCO(3)(-)/5% CO(2)) where benzolamide increased the SD duration by 55 +/- 32%. The initial velocity (including time for induction) and propagation velocity (measured between distal electrodes) were enhanced by 35 +/- 25 and 26 +/- 16%, respectively. Measurements of [Ca(2+)](o) demonstrated an increase in duration of the Ca(2+) transient when the alkaline shift was amplified by benzolamide. The augmentation of SD caused by benzolamide was blocked in media containing the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonovaleric acid. These data indicate that the induction and propagation of SD is inhibited by a fall in baseline pH characteristic of ischemic conditions and that the early alkaline shift can remove this inhibition by relieving the proton block on NMDA receptors. Under ischemic conditions, the intrinsic alkalosis may therefore enable SD and thereby contribute to NMDA receptor-mediated injury.  (+info)